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Nonlinear elasticity of the sliding columnar phase

C. S. O’Hern* and T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 22 May 1998!

The sliding columnar phase is a liquid-crystalline phase of matter composed of two-dimensional smectic
lattices stacked one on top of the other. This phase is characterized by strong orientational but weak positional
correlations between lattices in neighboring layers and a vanishing shear modulus for sliding lattices relative to
each other. A simplified elasticity theory of the phase only allows intralayer fluctuations of the columns and
has three important elastic constants: the compression, rotation, and bending moduliB, Ky , and K. The
rotationally invariant theory contains anharmonic terms that lead to long-wavelength renormalizations of the
elastic constants similar to the Grinstein-Pelcovits renormalization of the elastic constants in smectic liquid
crystals@Phys. Rev. Lett.47, 856 ~1981!; Phys. Rev. A26, 915 ~1982!#. We calculate these renormalizations
at the critical dimensiond53 and find thatKy(q);K1/2(q);B21/3(q);@ ln (1/q)#1/4, where q is a wave
number. The behavior ofB, Ky , andK in a model that includes fluctuations perpendicular to the layers is
identical to that of the simple model with rigid layers. We use dimensional regularization rather than a
hard-cutoff renormalization scheme because ambiguities arise in the one-loop integrals with a finite cutoff.
@S1063-651X~98!11011-5#

PACS number~s!: 61.30.Cz, 64.60.Ak, 87.10.1e
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I. INTRODUCTION

DNA, which is a semiflexible polymer, and cationic lipid
in solution form complexes in which the negative charge
the DNA is nearly compensated for by the positive charge
the lipids. These complexes are under intensive study as
sible nonviral carriers of DNA to cell nuclei for gene thera
@1#. Rädler et al. have shown that under appropriate con
tions the complexes self-assemble into multilamellar str
tures@2#. The lipids form stacked bilayer sheets with DN
molecules intercalated in the galleries between the bilay
as shown in Fig. 1. Each gallery is thick enough to acco
modate only one DNA molecule and its hydration lay
Within each gallery, DNA molecules adopt a linear rath
than a coiled configuration and form a regularly spaced p
allel array that in the absence of couplings to DNA in oth
galleries is a two-dimensional smectic liquid crystal@3#. The
experimentally determined x-ray structure factor of the
complexes is well modeled by a stack of weakly coup
two-dimensional~2D! smectic lattices@2#.

Two recent theoretical papers@4,5# have pointed out tha
weakly coupled 2D smectic lattices form a different phase
matter, thesliding columnarphase. This phase is characte
ized by strong orientational correlations but weak positio
correlations between smectic lattices. All lattices are align
on average along a common direction~the x axis in Fig. 1!,
but their relative positions decorrelate exponentially w
distance between smectic lattices. With sufficiently stro
coupling between galleries, long-range positional corre
tions between smectic layers develop and the system
comes an anisotropic columnar phase with a tw
dimensional DNA lattice in the plane perpendicular to t
direction of DNA alignment. The sliding columnar phase,
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the other hand, is what the columnar phase becomes w
coupling between galleries becomes so weak that DNA
tices can slide freely across each other. It has no shear m
lus resisting relative displacements of DNA lattices, but
does have a rotation modulus resisting their relative rotat
Dislocations may melt the sliding columnar phase to an
isotropic nematic lamellar phase at length scales longer t
an in-plane dislocation unbinding length@6#. It is possible,
however, to choose interlayer interactions so that the slid
columnar phase is the stable equilibrium phase at all len
scales@7#.

This paper will investigate the nonlinear elasticity of th
sliding columnar~SC! phase. Its principal purpose is to sho
that the nonlinear strains lead to a Grinstein-Pelcovits ren
malization of the elastic constants@8# and not, as one could
imagine, to the destruction of the sliding columnar pha
itself. The lipid bilayers, which we take to be aligned o
average parallel to thexz plane as shown in Fig. 1, fluctuat
like bilayers in any lamellar phase. To understand corre
tions and fluctuations of the DNA smectic lattices, it is co
venient to consider first a model in which the lipid bilaye
are rigid planes with no fluctuations in they direction. In this

ic

FIG. 1. Picture of the idealized sliding columnar phase. T
DNA columns are sandwiched between planar lipid bilayer she
The bilayer planes are stacked in they direction with spacinga. The
DNA columns are oriented in thex direction and within each laye
the columns are separated byd. The positions of columns in neigh
boring layers are uncorrelated.
5948 © 1998 The American Physical Society
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case, displacements of the DNA lattices, which are alig
on average along thex direction, are restricted to thez direc-
tion.

The rotationally invariant Landau-Ginzburg-Wilso
Hamiltonian in units ofkBT for this system is

H5
1

2E d3x@Buzz
2 1Ky~]x]yuz!

21K~]x
2uz!

2#, ~1!

whereB, Ky , andK are the compression, rotation, and ben
ing moduli divided bykBT and

uzz5]zuz2
1

2
@~]xuz!

21~]zuz!
2# ~2!

is the nonlinear Eulerian strain appropriate for the slid
columnar phase. Note thatH is invariant under

uz8~x!→uz~x!1 f ~y!. ~3!

It is this fact that ensures that nonlinearities do not dest
the sliding columnar phase.

The rotationally invariant strainuzz introduces anhar-
monic terms into the Hamiltonian that lead to a Grinste
Pelcovits renormalization ofB, Ky , and K. The renormal-
ized moduli scale logarithmically with q at long
wavelengths:

Ky~q!;K1/2~q!;B21/3~q!;F ln S m

q D G1/4

, ~4!

wherem is a large momentum cutoff. A complete model f
the sliding columnar phase allows both lipid bilayers a
smectic lattices to fluctuate. This model also exhib
Grinstein-Pelcovits renormalization of the elastic consta
Table I lists the exponents describing singularities in
elastic constants for both the 3D smectic and sliding colu
nar phases.

The evaluation of the above renormalization presen
some unexpected difficulties. The continuum Hamiltonian
Eq. ~1! is formally invariant under arbitrary global rotation
However, the introduction of a hard cutoff breaks this ro
tional invariance just as the introduction of a similar cuto
breaks gauge invariance in gauge Hamiltonians@9#. Never-
theless, hard-cutoff renormalization group~RG! procedures
can with care be applied successfully to Hamiltonians w
gauge@10# or rotation symmetries@11#. Indeed, the original
Grinstein-Pelcovits calculation of the logarithmic renorm
ization of the smectic-A elastic constants used a hard cuto
@8#. When we applied the popular momentum-shell ha
cutoff RG procedure@12# to the nonlinearities in the sliding
columnar phase, we encountered ambiguities that we w

TABLE I. Comparison of the logarithmic scaling exponents f
the elastic moduli of the 3D smectic and sliding columnar phas
At long wavelengths the elastic moduli for both phases scale
lna@1/q#, with a given below.

Phase B K Ky

3D smectic 24/5 2/5
Sliding columnar 23/4 1/2 1/4
d
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unable to resolve. We found that the values of the one-lo
diagrams depended on whether the external momentum
added to the top or the bottom part of the internal loo
Similar difficulties are not encountered in the Grinste
Pelcovits calculation. To eliminate these ambiguities,
switched to the dimensional regularization procedure that
plicitly preserves rotational invariance because the cuto
are infinite@13#.

The remainder of the paper will be organized as follow
We first rederive the results of Grinstein and Pelcovits
Sec. II using dimensional regularization. Then, in Sec. III
calculate the renormalization of the sliding columnar elas
constants of the simplified theory using the same scheme
Sec. IV we relax the constraint of rigid membranes and sh
that the membrane fluctuations do not modify the scal
behavior of the elastic moduli of the rigid theory. We give
brief conclusion in Sec. V. In Appendixes A and B, w
evaluate the one-loop diagrams for the 3D smectic and s
plified sliding columnar theories. In Appendix C we sho
that ambiguities arise when a finite cutoff is implemented
calculate the loop diagrams of the sliding columnar theo
Finally, in Appendix D we derive the nonlinear strains r
quired for the rotationally invariant theory of the sliding c
lumnar phase in the presence of fluctuating membranes.

II. RG ANALYSIS OF THE 3D SMECTIC LIQUID
CRYSTAL

The rotationally invariant elasticity theory for a smect
liquid crystal contains nonlinear terms that renormalize
elastic constants of the harmonic theory for all dimensio
below 3. Grinstein and Pelcovits calculated the correction
the elastic constants of a 3D smectic using a RG anal
with a finite-wave-number cutoff@8#. They found that the
corrections to both the compression and bending moduli
logarithmic in the wave numberq with the former scaling to
zero and the latter scaling to infinity at long wavelength
Application of a hard-cutoff RG procedure to the slidin
columnar phase leads to ambiguities with no obvious res
tion. ~See Appendix C.! We therefore employ a dimensiona
regularization procedure that sends the cutoff to infinity a
thereby preserves rotational invariance. In this section
rederive the Grinstein-Pelcovits results for a 3D smectic
ing dimensional regularization. This establishes the langu
needed to calculate the renormalization in the sliding colu
nar phase.

A. Rotationally invariant theory

A smectic liquid crystal ind dimensions is characterize
by a mass-density wave with periodP52p/q0 along one
dimension and by fluidlike order in the otherd21 dimen-
sions. The phase of the mass-density wave at the poix
5(x' ,z) is q0@z2u(x)#. The elastic Landau-Ginzburg
Wilson Hamiltonian for a smectic is identical in form to th
Landau–Peierls–deGennes Hamiltonian for a 1D solid.
units of kBT, it is

H5
1

2E ddx@Bsmuzz
2 1Ksm~¹'

2 u!2#, ~5!

where ¹' is the gradient operator in thed21 subspace

s.
s
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spanned byx', andBsm andKsm are, respectively, the com
pression and bending moduli divided bykBT. The nonlinear
Eulerian strainuzz5]zu2(1/2)(¹u)2 is invariant with re-
spect to uniform, rigid rotations of the smectic layers. Bel
we will drop the (]zu)2 term in uzz since its inclusion leads
to nonlinear terms that are irrelevant in the RG sense w
respect to the two quadratic terms in Eq.~5!. Therefore, we
will take

uzz']zu2
1

2
~¹'u!2. ~6!

Strictly speaking, we should include a term linear inuzz
whose coefficient is chosen to make^uzz&50. The inclusion
of and proper treatment of this term do not modify our R
equations and we will ignore it here and in our treatment
the sliding columnar phase.

B. Engineering dimensions

To implement our RG procedure it is convenient to
scale parameters so thatBsm is replaced by unity and the
nonlinear form ofuzz is preserved. To this end, we scaleu
andx as

u5Luũ, z5Lzz̃, x'5 x̃' . ~7!

Note thatx' does not rescale. Under these rescalings
obtain

uzz5LuLz
21S ] z̃ũ2

1

2
LuLz~¹'̃ũ!2D . ~8!

We requireuzz5Aũzz, whereũzz5] z̃ũ2(1/2)(¹'̃ũ)2 is the
rescaled nonlinear strain with the same form as Eq.~6!. This
yields Lu5Lz

21 and A5Lu
2 . The coefficient ofũzz

2 in the
rescaled Hamiltonian is set to one with the choice

Lu5Bsm
21/3. ~9!

The rescaled theory then becomes

H5
1

2E ddx̃F ũzz
2 1

1

w
~¹

'̃

2
ũ!2G , ~10!

with

w5
Bsm

1/3

Ksm
. ~11!

For the remainder of Sec. II we will use the Hamiltonian
Eq. ~10! but drop the tilde on the scaled variables.

We determine the dimensions of the scaled variables
ing the engineering dimensions ofBsm andKsm. The dimen-
sion dA determines howA scales with lengthL: @A#5LdA.
From the respective dimensionsdBsm

52d and dKsm
522d

of Bsm andKsm, we obtain@Lu#5@Lz
21#5Ld/3. Using these

we find the following for the dimensions of the scaled va
ables and the parameterw:
h

f

-

e

s-

@u#5F L

Lu
G5Le/3, @z#5F L

Lz
G5L11d/3,

~12!

@x'#5L, @w#5FL2d/3

L22dG5L22e/3,

wheree532d. Using these definitions one can easily veri
that both terms in Eq.~10! are dimensionless.@w# scales as
m2e/3 where@m#5L21 and it is therefore a relevant variab
below d53. The dimensions of the coefficients of th
(]zu)3, (]zu)2(¹'u)2, and (]zu)4 terms are 2d/3, 2d/3, and
4d/3, respectively. These nonlinear terms are irrelevant
will be ignored in what follows.

The engineering dimensions in Eq.~12! imply that there is
an invariance ofH under the transformationm→mb and

u~x' ,z!5bduu8~x'8 ,z8!, ~13!

wherex'8 5b21x' andz85b2(11d/3)z, i.e.,

H@u,w,m#5H@u8,wb2e/3,mb#. ~14!

This in turn implies a scaling form for the position correl
tion function G(x' ,z)5^u(x' ,z)u(0,0)& and its Fourier
transformG(q). We find

G~x' ,z,w!5b2~12d/3!G~x'8 ,z8,wb2e/3! ~15!

and from this we obtain the vertex functionG(q)5G21(q),

G~q' ,qz ,w!5b22~11d/3!G~bq' ,b11d/3qz ,wb2e/3!.
~16!

Whend53 this reduces to the scaling form

G~q' ,qz ,w!5q'
4 GS 1,

qz

q'
2

,wD , ~17!

which the harmonic vertex functionG5qz
21w21q'

4 satisfies.

C. RG procedure

To calculate renormalized quantities, we seek a multip
cative procedure that yields a renormalized Hamiltonian w
the same form as the original Hamiltonian, i.e., a Ham
tonian that is a function of a renormalized nonlinear str
with the same form as Eq.~6!. To preserve the form of the
strains, it is necessary to rescale fields and lengths simu
neously. The rescaling that produced Eq.~10! shows that the
form of uzz is preserved if the rescaling coefficients ofu and
z are inverses of each other. We therefore introduce a re
malization constantZ and a renormalized displacementu8
such that

u~x!5Z 1/3u8~x8!5Z 1/3u8~x' ,Z 1/3z!. ~18!

This implies thatuzz(x)5Z 2/3uzz8 (x8). We also introduce a
unitless renormalized coupling constantg and renormaliza-
tion constantZg via

w3/25gmeZgZ 1/2, ~19!
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wherem is an arbitrary wave-number scale. The renorm
ized Hamiltonian then becomes

H85
1

2E ddx8@Z~uzz8 !21~gmeZg!22/3~¹
'8
2 u8!2#.

~20!

We now follow standard procedures to evaluateZ(g) and
Zg(g) @13#. The renormalized Hamiltonian in Eq.~20! deter-
mines the vertex function

G~q!5qz
21~gme!22/3q'

4 1~Z21!qz
2

1~gme!22/3~Z g
22/321!q'

4 1S~q! ~21!

to one-loop order, whereS(q) is the one-loop diagrammati
contribution toG(q). We next impose the following condi
tions on the vertex function to enforce the correct scal
behavior:

dG

dqz
2 U

qz5m2,q'50

51 , ~22a!

dG

dq'
4 U

qz5m2,q'50

5~gme!22/3. ~22b!

In Appendix A we show that the diagrammatic contributio
are

dS~q!

dqz
2 U

qz5m2,q'50

52
g

16pe
, ~23a!

dS~q!

dq'
4 U

qz5m2,q'50

5~gme!22/3
g

32pe
. ~23b!

Using the conditions on the vertex function we obtain t
relations for the renormalization constants in terms of
one-loop diagrammatic corrections. The following relatio
are correct to lowest order ine:

Z511
g

16pe
, ~24a!

Zg511
3g

64pe
. ~24b!

1. Callan-Symanzik equation

The renormalized vertex functionG r(q) satisfies a Callan-
Symanzik~CS! equation under a change of length scalem.
We obtain the renormalized elastic moduli from the solut
to this equation. The original theory in Eq.~10! did not de-
pend on the length scalem. We can therefore write the bar
vertex functionG in terms of the renormalized vertex func
tion G r and find the differential equation obeyed byG r .
Since the variablesu and z scale asu8(x)5Z 1/3u(x8) and
z85Z 1/3z, the vertex function must scale as

G~q' ,qz ,w!5Z21/3G r~q' ,Z21/3qz ,g,m!. ~25!
l-

g

e
s

The CS equation is determined by the conditionmdG/dm
50. Since the renormalized vertex function can have an
plicit as well as an implicitm dependence through the func
tionsZ andg, the CS equation forG r has three terms

Fm ]

]m
2

h~g!

3 S 11qz

]

]qz
D1b~g!

]

]gGG r50, ~26!

where

b~g!5m
dg

dm
, ~27a!

h~g!5b~g!
d~ lnZ!

dg
, ~27b!

andqz]/]qz5qz8]/]qz8 with qz85Z21/3qz . This equation can
be integrated to yield an equation forG r as a function of the
length scalem,

G r~q' ,qz ,g,m!5expF1

3E0

l

hdl8G
3G r S q' ,expF1

3E0

l

hdl8Gqz ,g~ l !,m0D ,

~28!

wherem/m05el , md/dm5d/dl, andg( l ) must satisfy

dg~ l !

dl
52b~g!. ~29!

At l 50 we have setG r( l 50)5G r(q' ,qz ,g0 ,m0).
Now we must solve forb andh in terms ofg in order to

obtain the renormalized vertex function. To findb(g), we
note that

dw3/2

dl
5

d

dl
~gm0

eee lZgZ 1/2!50. ~30!

From this relation we findb(g)52e/d(ln Q)/dg, whereQ
5gZgZ 1/2. We then plug in the relations forZ andZg and
determineb andh to be

b~g!5
5

64p
g22eg, ~31a!

h~g!52
1

16p
g. ~31b!

In three dimensionse50. In this case, integration ofdg/dl
yields

g~ l !5
g0

115g0l /64p
, ~32!

where g0[g(0)5w3/2. The remaining task is simple; w
must evaluate the arguments of the exponentials in Eq.~28!
to obtain thel dependence ofG r . Sinceg;1/l , the integral
of h will scale as lnl and the exponentials of the integral o
h will give a power-law dependence onl . We find that
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expF1

3E0

l

h~ l 8!dl8G5F11
5g0

64p
l G24/15

[@g/g0#4/15.

~33!

2. Renormalized elastic constants

The scaling relations in Eqs.~16! and ~28! imply that G r
satisfies

G r~q' ,qz ,g,m!5b24@g/g0#4/15

3G r~bq' ,b2@g/g0#4/15qz ,g,m0b!.

~34!

We now choose the reference length scaleb5m0
215(qz

2

1w21q'
4 )21/4[@h(q)#21. This implies that

l 5 ln F m

h~q!G ~35!

sincem/m05el . We find the scaling form of the renorma
ized vertex function

G r5@h~q!#4@g/g0#4/15G rS q'

h~q!
,
qz@g/g0#4/15

@h~q!#2
,g,1D

5g22/3@g/g0#4/15q'
4 1@g/g0#4/5qz

2 ~36!

by squaring the term in the second slot of the renormali
vertex function and adding it tog22/3 times the fourth power
of the term in the first slot. We then plug in Eq.~32! for g
and transform back to variables with dimension to find
expression for the renormalized vertex function

G r~q!5BsmS 11
5g0

64p
ln F m̄

h̄~q!
G D 24/5

qz
2

1KsmS 11
5g0

64p
ln F m̄

h̄~q!
G D 2/5

q'
4 , ~37!

where g05Bsm
1/2Ksm

23/2, m̄5m/Bsm
1/6, and h̄(q)5(qz

2

1l2q'
4 )1/4 with l25Ksm/Bsm. m̄2 is a wave numberL

;1/a associated with the short distance scalea. We identify
the renormalized compression and bending moduliBsm(q)
and Ksm(q) as the coefficients of theqz

2 and q'
4 terms, re-

spectively. The renormalized elastic constants scale as p
ers of logarithms at long wavelengths

Ksm~q!;Bsm
21/2~q!;F ln S m̄

h̄~q!
D G 2/5

, ~38!

where the long-wavelength regime is defined by wave nu
bersq that satisfyh̄(q)!L1/2exp@264p/5g0#. We see that
Ksm(q) scales to infinity andBsm(q) scales to zero asq
→0.

III. SLIDING COLUMNAR PHASE WITH RIGID LAYERS

In this section we calculate the logarithmic corrections
the elastic constants for the sliding columnar phase using
d

e

w-

-

he

dimensional regularization scheme employed in the prec
ing section. The steps we follow for the dimensional reg
larization of the SC phase closely resemble those follow
for the dimensional regularization of the 3D smectic pha
since the two Hamiltonians have similar forms. In this se
tion we assume that each 2D lattice of columns is flat a
only allowed to fluctuate in thez direction. We relax this
assumption in Sec. IV and find that the renormalized ela
constants are identical to those of the flat theory to low
order in the coupling between strains in they and z direc-
tions.

A. Rotationally invariant theory

The rotationally invariant elasticity theory describing th
sliding columnar phase was derived previously in@4,5#. We
found that a phase with weak positional correlations
strong orientational correlations between neighboring
smectic lattices was possible for sufficiently low tempe
tures. The strong orientational correlations require a rota
modulus in the Landau-Ginzburg-Wilson Hamiltonian th
assesses an energy cost for relative rotations of the lattice
addition to the compression and bending energy costs f
single lattice of columns. The Hamiltonian for the idealiz
sliding columnar phase in three dimensions and in units
kBT is

H5
1

2E d3x@Buzz
2 1K~]x

2uz!
21Ky~]y]xuz!

2#, ~39!

whereB, Ky , andK are the compression, rotation, and ben
ing moduli divided bykBT. Symmetry permits additiona
terms in the Hamiltonian proportional toKzy(]z]yuz)

2 and
Kzx(]z]xuz)

2. The Kzy term measures the energy cost as
ciated with variation in the DNA lattice spacing from laye
to layer and theKzx term measures the energy cost associa
with the variation in the orientation with strand number
DNA strands within a layer. These terms are, however, s
dominant to those kept in Eq.~39! and the couplingsKzy and
Kzx are irrelevant. We will ignore them in what follows. Th
nonlinear strainuzz is identical to the nonlinear strain for on
layer of columnsuzz5]zuz2(1/2)@(]xuz)

21(]zuz)
2#. Be-

low we will drop the (]zuz)
2 term from the nonlinear strain

since it leads to terms in the nonlinear theory that are a
irrelevant with respect to the three harmonic terms in E
~39!. Therefore, we use the approximate expression

uzz']zuz2
1

2
~]xuz!

2. ~40!

We note thatuzz andH do not possess a shear strain te
(]yuz)

2 because neighboring layers of columns can sl
relative to one another without energy cost. The absenc
the shear energy cost is a unique feature of the sliding
lumnar elasticity theory. Because the Hamiltonian lac
terms withy derivatives alone, it is invariant with respect
shifts in uz that are only a function ofy. HenceH@uz8#
5H@uz# with

uz85uz1 f ~y!. ~41!
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This invariance restates that there is no energy cost for s
ing neighboring layers of columns relative to one another
an arbitrary amount.

B. Engineering dimensions

We simplify the sliding columnar theory in Eq.~39! by
rescaling the lengths so thatB andKy are replaced by unity
and the nonlinear form ofuzz is preserved. We accomplis
this by scalinguz , y, andz but not x. To implement a di-
mensional regularization scheme it is necessary to letx be-
come a~d22!-dimensional displacement in the space p
pendicular toy andz. Rescaled variables are defined via

uz5Luũz , x5 x̃, y5Lyỹ, z5Lzz̃. ~42!

We first setLu5Lz
21 to preserve the form ofuzz under Eq.

~42!. We then set the coefficients ofũzz
2 and (] ỹ] x̃ũz)

2 to
unity by choosing

Ly5S Ky
3

B D 1/4

, Lz5~KyB!1/4. ~43!

The rescaled Hamiltonian becomes

H5
1

2E ddx̃@ ũzz
2 1~] x̃] ỹũz!

21w21~] x̃
2
ũz!

2#, ~44!

with

w5
B1/2

KKy
1/2

~45!

andd532e. In the rest of this section we use Eq.~44! and
drop the tildes.

We determine the dimension of the scaled variables fr
the dimensions of the elastic constants in Eq.~39!. The di-
mensions@B#5L2d and @Ky#5@K#5L22d dictate

@uz#5L ~32d!/2, @x#5L,
~46!

@y#5L ~d21!/2, @z#5L ~d11!/2, @w#5Ld23.

Note that@w# scales asme with @m#5L21 and is relevant
below d53.

The engineering dimensions in Eq.~46! imply that the
Hamiltonian is invariant under the transformationsm→mb
and

uz~x!5bduzuz8~x8!, ~47!

with x85b21x, y85b2(d21)/2y, andz85b2(d11)/2z, i.e., the
Hamiltonian obeys

H@uz ,w,m#5H@uz8 ,wbe,mb#. ~48!

This implies that there is a scaling form for the positi
correlation function G(x)5^uz(x)uz(0)& and the vertex
function G5G21. We find thatG(q) obeys the scaling rela
tion

G~q,w!5b2~d11!G~bqx ,b~d21!/2qy ,b~d11!/2qz ,wbe!.
~49!
d-
y

-

Whend53 this reduces to

G~q,w!5qx
4G~1,qy /qx ,qz /qx

2!, ~50!

which is satisfied by the SC harmonic vertex functionG
5qz

21qx
2qy

21w21qx
4 .

C. RG procedure

We now follow closely the RG procedure in Sec. II C. W
rescale the lengths and fields, ensure that the SC Hamilto
has the same form as the unscaled SC Hamiltonian, imp
boundary conditions on the vertex function, and determ
the renormalization constants in terms of the one-loop d
grammatic corrections. The first step in the process is
rescale lengths such that the renormalized SC Hamilton
has the same form as Eq.~44!. To preserve the form of the
nonlinear strain, thez and u rescalings must be inverses o
one another and they rescaling is arbitrary. We therefor
introduce two renormalization constantsZ andZy such that

uz~x!5Z 1/3uz8~x8!5Z 1/3uz8~x,Zyy,Z 1/3z!. ~51!

This implies that uzz(x)5Z 2/3uzz8 (x8) and ]x]yuz(x)
5Z 1/3Zy]x8]y8uz8(x8). We also define a unitless couplin
constantg and renormalization constantZg by setting

w5gmeZ 1/3ZgZ y
21 . ~52!

The renormalized Hamiltonian then becomes

H85
1

2E ddx8@ZZ y
21~uzz8 !21Z 1/3Zy~]x8]y8uz8!2

1~gmeZg!21~]x8
2 uz8!2#. ~53!

We again employ standard RG procedures to calculateZ,
Zy , andZg . The renormalization constants are fixed on
we impose the following three conditions on the vertex fun
tion:

dG

dqz
2 U

qz5m2,qx,y50

51,

dG

d~qx
2qy

2!
U

qz5m2,qx,y50

51, ~54!

dG

dqx
4 U

qz5m2,qx,y50

5~gme!21.

~Note that we have dropped the primes on the resca
Hamiltonian.! The vertex function to one-loop order

G5qz
21qx

2qy
21~gme!21qx

41~ZZ y
2121!qz

2

1~Z 1/3Zy21!qx
2qy

21~gme!21~Z g
2121!qx

41S~q!

~55!

is obtained from Eq.~53! by adding and subtractingqz
2

1qx
2qy

21(gme)21qx
4 and including the one-loop diagram

matic contributions to the vertex functionS(q). In Appendix
B we calculate the diagrammatic contributions
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dS

dqz
2 U

qz5m2,qx,y50

52
g

8p2e
, ~56a!

dS

d~qx
2qy

2!
U

qz5m2,qx,y50

5
g

24p2e
, ~56b!

dS

dqx
4 U

qz5m2,qx,y50

5~gme!21
g

12p2e
~56c!

to lowest order ine. From these we determine the renorm
ization constants to be

Z511
g

16p2e
, ~57a!

Zy512
g

16p2e
, ~57b!

Zg511
g

12p2e
. ~57c!
n-
-

1. Callan-Symanzik equation

The Callan-Symanzik equation is obtained by requiri
that the original theory in Eq.~44! be independent of the
length scalem. To ensure this, we setmdG/dm50. This can
be converted into a differential equation in the renormaliz
vertex functionG r using scaling relation

G~q,w!5Z21/3ZyG r~qx ,Z y
21qy ,Z21/3qz ,g,m!. ~58!

From the scaling relation we determine that the CS equa
has the four terms

Fm ]

]m
2

h~g!

3 S 11qz

]

]qz
D

1hy~g!S 12qy

]

]qy
D1b~g!

]

]gGG r50, ~59!

whereh(g) andb(g) were defined previously in Sec. II C
andhy(g)5b(g)d(lnZy)/dg. The solution to Eq.~59! is
e

d

G r~q,g,m!5expF E
0

l S h

3
2hyDdl8GG r S qx ,expF E

0

l

hydl8Gqy ,expF1

3E0

l

hdl8Gqz ,g,m0D , ~60!

with G r( l 50)5G r(q,g0 ,m0) andm/m05el .
The coupling constantw must be independent of the length scalel . This condition yields a differential equation for th

dimensionless constantg whose solution is

g~ l !5
g0

11g0l /6p2 . ~61!

This equation in turn determines thel dependence ofh andhy since they are both proportional tog. We find

h~g!52hy~g!5
g

16p2 ~62!

and thus these scale as 1/l at long wavelengths.

2. Renormalized elastic constants

Using Eq.~61! for g( l ) and the relations forh(g) andhy(g) in Eq. ~62!, we obtain the scaling form of the renormalize
vertex function

G r~q,g,m!5b24@g/g0#1/2G r~bqx ,bqy@g/g0#23/8,b2qz@g/g0#1/8,g,m0b!. ~63!
To set the length scale, we choose

b5m0
215~qz

21qx
2qy

21w21qx
4!21/4[@h~q!#21. ~64!

It follows that

l 5 ln F m

h~q!G ~65!

sincem and l are related viam/m05el . We then substitute
Eq. ~61! for g and transform back to variables with dime
sion to obtain the following expression forG r(q):
G r~q!5BS 11
g0

6p2 ln F m̄

h̄~q!
G D 23/4

qz
2

1KyS 11
g0

6p2 ln F m̄

h̄~q!
G D 1/4

qx
2qy

2

1KS 11
g0

6p2 ln F m̄

h̄~q!
G D 1/2

qx
4 , ~66!

where g05B1/2/KKy
1/2, m̄5m/(KyB)1/8, and h̄(q)5(qz

2
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1ly
2qx

2qy
21l2qx

4)1/4, with ly
25Ky /B andl25K/B. m̄2 is an

upper momentum cutoffL;1/a associated with the short
distance scalea. We can now identify theq-dependent elas
tic constants and determine their scaling asq tends to zero.
At long wavelengths such thath̄(q)!L1/2exp@26p2/g0# the
ln term dominates and we find

Ky~q!;K1/2~q!;B21/3~q!;F ln S m̄

h̄~q!
D G 1/4

. ~67!

We see thatB(q) scales to zero andK(q) andKy(q) scale to
infinity as q→0. Also note in Table I that the exponents
the logarithmic power laws ofB(q) and K(q) are different
from those ofBsm(q) and Ksm(q), but the signs of the re
spective exponents are the same.

IV. SLIDING COLUMNAR PHASE WITH FLUCTUATING
LIPID BILAYERS

In the preceding section we considered a model for lam
lar DNA-lipid complexes in which lipid bilayers were treate
as rigid planes and no displacements of DNA lattices in thy
direction were allowed. In physically realized complexe
lipid bilayers can undergo shape fluctuations and DNA
tices can undergoy displacements. We can parameterize
shape of thenth bilayer by a height functionhn(x,z), which
in the continuum limit becomesh(x)5hy/a(x,z). They dis-
placement of the DNA lattices in the continuum limit
uy(x). At long wavelengths the displacementsh(x) and
uy(x) are locked together. The lock-in occurs because th
is an energy cost for translating each lattice of columns
the lipid bilayers by different constant amounts in they di-
rection. ~See Fig. 1.! We can therefore describe long
wavelength elastic distortions and fluctuations of the slid
columnar phase in terms of a Landau-Ginzburg-Wilson e
tic Hamiltonian expressed in terms of displacementsuz and
uy :

Hb@uy ,uz#5
1

2E d3x@Bzuzz
2 1Kxx

z ~]x
2uz!

2

1Kxy
z ~]x]yuz!

21Byuyy
2 1Kxx

y ~]x
2uy!2

1Kxz
y ~]x]zuy!21Kzz

y ~]z
2uy!212Byzuyyuzz#,

~68!

where uyy and uzz are nonlinear strains. We defineHb to
have units ofkBT and therefore the constants appearing
this equation are the compression and bending moduli
vided by kBT. The first three terms in Eq.~68! were dis-
cussed previously in Sec. III as theuz theory for the sliding
columnar phase without fluctuations of the lipid bilaye
The next four terms are the compression and bending e
gies for an anisotropic 3D smectic with layers parallel to
xz plane. The bending energy is anisotropic due to the p
ence of the DNA columns. The final term is a coupling of t
nonlinear strainsuyy anduzz.

The form of the nonlinear strains depends on whet
Eulerian or Lagrangian coordinates are used@14#. We find it
convenient to use a mixed parameterization in whichx andz
are Eulerian coordinates specifying a position in space
l-

,
-
e

re
d

g
s-

i-

.
er-
e
s-

r

d

y5na is a Lagrangian coordinate specifying the layer nu
ber. In Appendix D we derive the nonlinear strainsuzz and
uyy for this mixed parametrization. To quadratic order
gradients ofuy anduz , we find

uyy5]yuy2
1

2
@~]xuy!21~]zuy!22~]yuy!2#, ~69a!

uzz5]zuz2
1

2
@~]xuz!

21~]zuz!
22~]zuy!2#. ~69b!

Note that the nonlinear strainuzz does not contain the shea
strain term proportional to (]yuz)

2. Thus, layer fluctuations
do not modify the essential invarianceuz8→uz1 f (y) of the
sliding columnar phase to the order considered here@15#. In
what follows, we will truncate the nonlinear strains to

uyy']yuy , ~70a!

uzz']zuz2
1

2
~]xuz!

2 ~70b!

since the other nonlinear terms are irrelevant with respec
the sliding columnar harmonic terms in Eq.~68!.

The goal of this section is to calculate the Grinste
Pelcovits renormalization of the eight elastic constants fou
in the theory of the sliding columnar phase with lipid bilay
fluctuations. Since the nonlinear strains do not introduc
(]yuz)

2 term, we do not expect the bilayer fluctuations
alter the renormalization of the SC elastic constants in
simplified theory of Sec. III to lowest order inByz. We will
again use dimensional regularization to calculate the ren
malization. The format will closely parallel the previous S
calculation. We first determine which of the harmonic term
in Eq. ~68! are relevant and drop irrelevant terms. We th
rescale lengths and fields, ensure that the Hamiltonian ret
its unscaled form, impose boundary conditions on the ver
function, and calculate the renormalization constants. T
renormalization constants then determine the scaling form
the vertex function.

A. Engineering dimensions

We begin by rescaling the lengths and the fields inHb . In
addition to the rescalings in Sec. III B, we also rescaleuy
according to

uy5Luy
ũy . ~71!

We first impose the conditions of Sec. III B, i.e., we set t
coefficients ofũzz

2 and (] x̃] ỹuz)
2 to unity and ensure tha

both terms in the nonlinear strainuzz scale the same way. A
an added constraint, we set the coefficient ofũyy

2 to unity.
These conditions fix
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Luy
5S Kxy

z

Bz D 1/4
1

~By!1/2
,

Ly5S ~Kxy
z !3

Bz D 1/4

, ~72!

Lz5Luz

215~Kxy
z Bz!1/4.

Once we plug in these scaling lengths, the rescaled Ha
tonian becomes

Hb5
1

2E ddx̃@ ũzz
2 1~] x̃] ỹuz!

21w21~] x̃
2
ũz!

2

1~] ỹũy!212v~] ỹũy!ũzz1v1~] x̃
2
ũy!2

1v2~] x̃] z̃ũy!21v3~] z̃
2
ũy!2#, ~73!

with

w5
~Bz!1/2

Kxx
z ~Kxy

z !1/2
, v5

Byz

~ByBz!1/2
,

v15
Kxx

y ~Kxy
z !3/2

By~Bz!1/2
, v25

Kxz
y Kxy

z

ByBz
, ~74!

v35
Kzz

y ~Kxy
z !1/2

~Bz!3/2By
.

~It is again necessary to letx represent ad22 displacement
with d532e.! The dimensions of the scaled variables a
the w and v coefficients are determined using Eq.~72! and
the dimensions of the compression and bending moduli@B#
5L2d and@K#5L22d. ~Note we have dropped the tildes o
the scaled variables in the following discussion.! We find

@uy#5L ~12d!/2, @v#5L0, @v1#5L52d,
~75!

@v2#5L4, @v3#5Ld13,

while the dimensions ofuz , y, z, andw were given previ-
ously in Eq. ~46!. Note thatv does not scale with length
Also note that the coefficientsv1, v2, andv3 are irrelevant
when d53. We drop the irrelevant terms and arrive at t
simplified Hamiltonian

Hb5
1

2E ddx@uzz
2 1~]x]yuz!

21w21~]x
2uz!

2

1~]yuy!212v~]yuy!uzz#. ~76!

B. RG procedure

The present RG procedure will be similar to those e
ployed in Secs. II C and III C, except we now have tw
coupling constantsw andv instead of one. We will show tha
the inclusion ofv does not alter the renormalization of th
sliding columnar elastic constants to lowest order inv. As
before, we rescale the fields and lengths and seek a re
il-

-

or-

malized Hamiltonian with the same form as Eq.~76!. We
scaley, z, anduz as we did previously in Eq.~51! anduy by
Z̃1/2 as

uy~x!5Z̃1/2uy8~x8!5Z̃1/2uy8~x,Zyy,Z 1/3z!. ~77!

The rescaled HamiltonianHb8 looks similar to Eq.~53! with
two additional terms due to fluctuations of the bilayers. W
drop the primes on the variables and find

Hb5
1

2E ddx@ZZ y
21uzz

2 1Z 1/3Zy~]x]yuz!
2

1~gmeZg!21~]x
2uz!

21Z21/3ZyZ̃~]yuy!2

12v̄Zv~]yuy!uzz#, ~78!

where

v̄Zv5vZ̃1/2Z 1/3 ~79!

andZg was defined previously.
Boundary conditions imposed on the vertex functio

G i j (q) with i , j 5y,z ensure that the Hamiltonian retains i
original form in Eq.~76! after rescaling. The vertex functio
is defined byG i j (q)5Gi j

21(q) with Gi j (x)5^ui(x)uj (0)&.
The conditions imposed onGzz are identical to those given in
Eq. ~54!; these are augmented by two conditions onGyz and
Gyy ,

dGyz

d~qyqz!
U

qz5m2,qx,y50

52v̄,

~80!
dGyy

dqy
2 U

qz5m2,qx,y50

51.

Once we impose these conditions on the vertex functio
we solve for theZ’s in terms of the one-loop diagrammat
contributionsS i j , where, for instance,Szz is the one-loop
correction to the vertex functionGzz. The diagrammatic cor-
rections arise from the quadratic term inuzz. uzz

2 generates
]zuz(]xuz)

2, which was already present in the theory wi
uy50. The coupling ofuyy to uzz generates a new nonlinea
term ]yuy(]xuz)

2. This term is shown schematically in Fig
2. There are six more one-loop diagrams in addition to

FIG. 2. Schematic diagram of the additional relevant nonlin
term ]yuy(]xuz)

2 generated by the sliding columnar theory wi
lipid bilayer fluctuations. The symbolsx and y written adjacent to
the dividing lines representx and y derivatives of the respective
fields. Theuy field is denoted by a dashed line, whileuz is denoted
by a solid line.
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three diagrams of the rigid sliding columnar theory; these
shown in Figs. 3 and 4. The diagrams in Fig. 3 arise fr
contractions of]yuy(]xuz)

2 with itself and the diagrams in
Fig. 4 arise from contractions of]yuy(]xuz)

2 with
]zuz(]xuz)

2.
The one-loop diagrammatic correctionsSzz are easy to

calculate since the form of the propagatorGzz is unchanged
from its form in the rigid sliding columnar theory. The form
is not changed, but the compression modulusB is renormal-
ized by a factor of 12 v̄2. The one-loop diagrammatic cor
rections toGzz are shown to lowest order ine:

dSzz

dqz
2 U

qz5m2,qx,y50

52
g

8p2e

1

A12 v̄2
,

dSzz

d~qx
2qy

2!
U

qz5m2,qx,y50

5
g

24p2e
A12 v̄2, ~81!

dSzz

dqx
4 U

qz5m2,qx,y50

5~gme!21
g

12p2e
A12 v̄2.

These expressions reduce to those found for the rigid the
when v̄50.

The calculation of one-loop diagrammatic corrections
Gyz andGyy is similarly straightforward.Syz is given by the
diagram in Fig. 4~a!. This amplitude is proportional tov̄
since it is formed by contracting]yuy(]xuz)

2 with
]zuz(]xuz)

2. Syy is given by the diagram in Fig. 3~a!; it must
be proportional tov̄2 since it is formed by contracting
]yuy(]xuz)

2 with itself. The one-loop corrections toGyz and
Gyy are given below to lowest order ine:

FIG. 3. Three diagrams that can be formed by contract
]yuy(]xuz)

2 with itself. The only diagram that contributes to th
renormalization ofBy is pictured in~a!. The diagrams in~b! and~c!
contribute to the renormalization of bothKxx

z andKxy
z .
e

ry

dSyz

d~qyqz!
U

qz5m2,qx,y50

52
gv̄

8p2e

1

A12 v̄2
,

~82!

dSyy

dqy
2 U

qz5m2,qx,y50

52
gv̄2

8p2e

1

A12 v̄2
.

We then use the conditions imposed on the vertex fu
tions in Eqs.~54! and ~80! and the one-loop diagrammati
corrections in Eqs.~81! and ~82! to find the renormalization
constants~the Z’s! in terms of g and v̄. We find that the
relations forZ, Zy , andZg are unchanged to zeroth order

v̄. Z̃ andZv also have terms that are independent ofv̄ as
shown below to lowest order ine:

Z̃'11
g

12p2e
, Zv'11

g

8p2e
. ~83!

The variation ofg and v̄ with the length scalem is obtained
by enforcing that both bare coupling constants do not dep
on m, i.e., we setmdw/dm5mdv/dm50. These two re-
quirements determine the recursion relations forg andv̄; we
find thatdg/dl is unchanged to lowest order inv̄ and

dv̄
dl

52
gv̄

16p2
. ~84!

The zeroth-order solution forg was found previously in Eq.
~61!; we plug this solution into Eq.~84! and find

v̄~ l !5
v̄0

@11g0l /6p2#3/8
, ~85!

wherev̄05Byz/AByBz andg05ABz/Kxy
z /Kxx

z .

FIG. 4. Three diagrams that can be formed by contract
]zuz(]xuz)

2 with ]yuy(]xuz)
2. The only diagram that contributes t

the renormalization ofByz is pictured in~a!. The diagrams pictured
in ~b! and~c! contribute to the renormalization of bothKxx

z andKxy
z .

g
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C. Renormalized elastic constants

We found in Secs. II C 2 and III C 2 that the renormaliz
elastic constants are obtained by solving the Call
Symanzik equation for the renormalized vertex function. W
find the CS equations forG i j

r using the following scaling
equations that relate the bare and renormalized vertex f
tions:

Gzz~q,w,v !5Z21/3Z yGzz
r ~q8,g,v̄,m!, ~86a!

Gyy~q,w,v !5Z̃21Z y
21Z 1/3Gyy

r ~q8,g,v̄,m!, ~86b!

Gyz~q,w,v !5Z̃21/2ZyGyz
r ~q8,g,v̄,m!. ~86c!

Equation~86a! yields a CS equation identical to Eq.~59! to
lowest order inv̄ and thus the renormalized elastic consta
Bz(q), Kxx

z (q), andKxy
z (q) are identical to those obtained i

Eq. ~66! using theuy50 theory. The fact that the elasti
constants are identical to zeroth order inv̄ is a consequence
of the fact that the nonlinear term proportional tov̄ does not
introduce any harmonic terms that were not already pre
c.

es

l-

-

za
s
ar
-
e

c-

s

nt

in the theory withoutuy fluctuations. We also find that th
coefficient ofGyy

r (q8) is unity to lowest orderv̄ and hence
the vertex functionGyy does not rescale. As a result,By

5By( l 50) plus higher-order terms inv̄.
We do, however, find a nontrivial renormalization ofByz.

The scaling relation in Eq.~86c! leads to a CS equation fo
Gyz

r with a similar form to the one found in Eq.~59!. We find

Fm
]

]m
2

h̃~g!

2
2

h~g!

3 S qz

]

]qz
D

1hy~g!S 12qy

]

]qy
D1b~g!

]

]g
GG r50 ~87!

to zeroth order inv̄, where

h̃~g!5b~g!
d~ ln Z̃!

dg
5

g

12p2 ~88!

and h and hy were defined previously. The solution to E
~87! can be transcribed from Eq.~60! and is
liding
Gyz
r
„q,g,v̄~g!,m…5expF E

0

l S h̃

2
2hyD dl8GGyz

r S qx ,expF E
0

l

hydl8Gqy ,expF1

3E0

l

hdl8Gqz ,g,m0D . ~89!

Sinceh, hy , and h̃ scale as 1/l , the integrals in the arguments of the exponentials scale logarithmically withl . Thus the
exponentials yield power laws ing and we find, for example,

expF E
0

l S h̃

2
2hyD dl8G5Fg~ l !

g0
G5/8

. ~90!

The renormalized vertex function in Eq.~89! obeys a scaling form analogous to the one obeyed by the renormalized s
columnar vertex function in Eq.~63!. We find

Gyz
r ~q,g,m!5b23@g/g0#5/8Gyz

r ~bqx ,bqy@g/g0#23/8,b2qz@g/g0#1/8,g,m0b!, ~91!
c-
he

du-

in
nd
rder
r to
in

ure
in-
not

rk
tion
where theb23 prefactor is present becausey scales asb and
z scales asb2. We then chooseb5m0

215@qz
21qx

2qy
2

1w21qx
4#21/4[@h(q)#21 to match the conventions of Se

III C 2, substitute Eq.~61! for g/g0, and return to variables
with dimension. The renormalized vertex function becom

Gyz
r ~q!52ByzF11

g0

6p2 ln S m̄

h̄~q!
D G23/4

qyqz , ~92!

where m̄ and h̄(q) were defined previously. The renorma
ized elastic constantByz(q) is the coefficient ofqyqz in the
above expression. Therefore, we find that bothBz and Byz

scale to zero logarithmically withq at long wavelengths de
fined by h̄(q)!L1/2exp@26p2/g0#.

V. CONCLUSION

We have calculated the Grinstein-Pelcovits renormali
tion of the elastic constants for the sliding columnar pha
We first used a simplified model of the sliding column
-
e.

phase in which the DNA columns were prevented from flu
tuating perpendicular to the lipid layers. We found that t
elastic constants scaled as powers of ln@1/q# at long wave-
lengths. In particular, we found that the compression mo
lus B scales to zero and the rotation and bending moduliKy
andK scale to infinity asq tends to zero. We then added
perpendicular fluctuations of the columns perturbatively a
found that the above results were unchanged to lowest o
in the coupling between strains parallel and perpendicula
the lipid layers. We employed dimensional regularization
our RG analysis of the sliding columnar phase to ens
rotational invariance. RG schemes that break rotational
variance, such as the momentum-shell technique, did
yield correct results.
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APPENDIX A: EVALUATION OF THE 3D SMECTIC
ONE-LOOP DIAGRAMS

Our task in this appendix is to calculateS(q) defined in
Sec. II C as the one-loop diagrammatic corrections toG(q),
the vertex function for the 3D smectic. These correctio
arise from the nonlinear terms in the Hamiltonian in E
~10!. The two nonlinear terms are]zuz(¹'u)2/2 and
(¹'u)4/8 ~shown schematically in Fig. 5! and only contrac-
tions of the former contribute to the renormalization to on
loop order. The three possible contractions are shown in
6. The diagrammatic correctionsS(q) can be expressed as

FIG. 5. Schematic representation of the two relevant nonlin
terms in both the 3D smectic and sliding columnar elasticity th
ries. The perpendicular derivatives (') correspond to the 3D smec
tic theory and thex derivatives to the sliding columnar theory. Th
term (]',xu)4 is pictured in~a! and the term (]zu)(]',xu)2 is pic-
tured in~b!. The symbols', x, andz represent', x, andz deriva-
tives of theu field. The diagram with fouru fields in ~a! does not
contribute to the renormalization to one-loop order; only contr
tions of ~b! with itself contribute.

FIG. 6. Three one-loop diagrams that contribute to the ren
malization of the 3D smectic and sliding columnar elastic consta
These diagrams are formed by contracting]zu(]',xu)2 with itself.
The diagram in~a! contributes terms proportional toqz

2 since a
factor of qz is on each external leg. The diagrams in~b! and ~c!
contribute terms proportional toq'

4 in the 3D smectic theory and
terms proportional toqx

2qy
2 and qx

4 in the sliding columnar theory
since these diagrams haveq'

2 or qx
2 on the external legs.
s
.

-
g.

S~q!5P1~q!qz
21P2~q!q'

4 [S1~q!1S2~q!. ~A1!

Note that we have separated theqz
2 and q'

4 dependence of
S(q) so that to lowest order inq

dS

dqz
2U

qz5m2,q'50

5
dS1

dqz
2U

qz5m2,q'50

~A2!

and

dS

dq'
4U

qz5m2,q'50

5
dS2

dq'
4U

qz5m2,q'50

. ~A3!

The contributions ofdS2 /dqz
2 to dS/dqz

2 and ofdS1 /dq'
4

to dS/dq'
4 at the special pointqz5m2 andq'50 are higher

order ine than the contributions in Eqs.~A2! and ~A3!. We
begin by calculatingS1(q).

1. Calculation of S1„q…

The diagram in Fig. 6~a! alone contributes toS1(q) since
it is the only one withqz

2 on the external legs. To evaluat
the integrals in the perturbation theory, we use dimensio
regularization, i.e., we taked532e, set the cutoff to infin-
ity, and look for the 1/e terms.S1(q) is obtained by calcu-
lating theqz

2 contribution from the integral

S1~q!52
qz

2

2 E
2`

` d32ek

~2p!32e
@~q'1k'! i~q'1k'! j

3k' ik' jG~k1q!G~2k!], ~A4!

wherei , j 5x,y and

G~q!5
1

qz
21w21q'

4
. ~A5!

The coefficient of theqz
2 term in Eq.~A4! is P1(q). We can

then approximateS1(q) by writing S1(q)5qz
2P1(q'

50,qz) plus higher-order terms inq' that vanish when we
apply the boundary condition in Eq.~22a!. We obtain
P1(qz) by settingq'50 in the integral on the right-hand
side of Eq.~A4!.

To evaluate the integral, we first combine the denomi
tors of G(k1q) andG(2k) employing the identity

1

~kz1qz!
21w21k'

4

1

@kz
21w21k'

4 #

5E
0

1

dx
1

@~kz1xqz!
21x~12x!qz

21w21k'
4 #2

.

~A6!

We then change variables tokz85kz1xqz and perform the
integration overkz8 . We find thatS1(q) can be written in
terms of the integralJ(4,3,x,qz) with J(s,v,x,qz) defined by

r
-

-

r-
s.
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J~s,v,x,qz!5E
0

`

dk'k'
12e

k'
s

@x~12x!qz
21w21k'

4 #v/2

5
wv/2

4G~v/2!
GS 1

4
~2v2s221e! D

3GS 1

4
~s122e! D

3@x~12x!wqz
2#~s22v122e!/4, ~A7!

whereG(x) is the gamma function evaluated atx. The ex-
pression forS1(q) is simple when expressed in terms of t
integralJ(4,3,x,qz); we find

S1~q!52
qz

2

16pE0

1

dx J~4,3,x,qz!. ~A8!

From Eq. ~A7! we know that the most dominant term
J(4,3,x,qz) scales as 1/e and thus

S1~q!52
w3/2

16pe
qz

2~wqz
2!2e/4 ~A9!

plus higher-order terms ine. We can also writeS1(q) as

dS1~q!

dqz
2 U

qz5m2,q'50

52
g

16pe
~A10!

when we replacew by (gme)2/3.

2. Calculation of S2„q…

S2(q) is determined by calculating theq'
4 contributions

from the diagrams in Figs. 6~b! and 6~c!. S2(q) is the q'
4

part of the integral

S2~q!52q' iq' jE d32ek

~2p!32e
@~kz1qz!

2k' ik' j

1~kz1qz!~k'1q'! j k' ikz]

3G~k1q!G~2k!. ~A11!

Theq'
4 contributions come from expandingG(k1q) to sec-

ond order inq' ; we see from Eq.~A11! that we need both
the first- and second-order terms in the expansion. The c
ficient of the q'

4 term in the above expansion isP2(q'

50,qz) and thusS2(q)5q'
4 P2(qz) plus higher-order terms

in q' that vanish when we apply the boundary condition
Eq. ~22b!.

The first and second terms in the integrand of Eq.~A11!
correspond to the diagrams in Figs. 6~b! and 6~c!, respec-
tively. We break up the integral so thatS2(q)5S2

b(q)
1S2

c(q) and we first calculateS2
b(q).

S2
b~q!52

1

2
q' iq' jq' l

q'm

3E
2`

` dkz

2p E dV

~2p!22e
dk'k'

12e

3F ~kz1qz!
2k' ik' jG~2k!

d2G~k1q!

dq' l
dq'm

U
q'50

G ,

~A12!

whereV is the solid angle in 22e dimensions and the sec
ond derivative ofG gives the coefficient of the quadrati
term in the expansion ofG(k1q). We then remove the an
gular dependence by integrating overV and using the two
identities

E dV

~2p!22e
k' ik' j5

S22e

22e
k'

2 d i j ~A13!

and

E dV

~2p!22e
k' ik' j k' lk'm

5
S22e

~22e!3
k'

4 ~d i j d lm1d i l d jm1d imd j l !,

~A14!

where d i j is the Kronecker delta andSd5V/(2p)d

52pd/2/(2p)dG(d/2) with d522e. We are interested in
the lowest-order terms ine and hence will useS22e

'(2p)21 below. We then change variables tokz85kz1qz

and combine the denominators ofG(2k) andG(k1q) us-
ing an identity similar to Eq.~A6!:
1

~kz2qz!
21w21k'

4

1

@kz
21w21k'

4 #n
5G~n11!E

0

1

dx
f n~x!

@~kz2xqz!
21x~12x!qz

21w21k'
4 #n11

, ~A15!
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wheren52,3 and

f n~x!5H 12x, n52

~12x!2/2, n53.
~A16!

We change variables again tokz95kz1xqz and integrate over
kz9 ; we find thatS2

b(q) can be written in terms of the inte
gralsJ(s,v,x,qz) defined previously in Eq.~A7!:

S2
b~q!52

w21

32p
q'

4 E
0

1

dx@25~12x!J~4,3,x,qz!

215x2~12x!qz
2J~4,5,x,qz!

19w21~12x!2J~8,5,x,qz!

145w21x2~12x!2qz
2J~8,7,x,qz!#. ~A17!

J(4,3,x,qz) and J(8,5,x,qz) have terms proportional to 1/e,
but J(4,5,x,qz) and J(8,7,x,qz) do not. We keep the term
that are proportional to 1/e and drop the others. In the las
step we perform thex integration and find

S2
b~q!52

w1/2

64pe
q'

4 ~wqz
2!2e/4 ~A18!

plus higher-order terms ine.
We next obtainS2

c(q) by calculating theq'
4 contributions

from the diagram in Fig. 6~c!. S2
c(q) can be written in terms

of the integral

S2
c~q!52q' iq' jE dV

~2p!22e
dk'k'

12e

3E
2`

` dkz

2pF kz~kz1qz!G~2k!

3S k' iq' jq' l

dG~k1q!

dq' l
U

q'50

1k' ik' j

q' l
q'm

2

d2G~k1q!

dq' l
dq'm

U
q'50

D G .

~A19!

The first and second derivatives ofG give the coefficients of
the linear and quadratic terms inq' in the expansion of
G(k1q). We then follow a procedure similar to the on
employed to findS2

b(q), i.e., we change variables tokz8
5kz1qz , combine the denominators ofG(k1q) and
G(2k), and integrate overV. The remaining integrals in
Eq. ~A19! are overk' andx. We then integrate overk' and
write S2

c(q) in terms ofJ(s,v,x,qz); we find
S2
c~q!52

w21

32p
q'

4 E
0

1

dx@29~12x!J~4,3,x,qz!

127x~12x!2qz
2J~4,5,x,qz!

19w21~12x!2J~8,5,x,qz!

245w21x~12x!2qz
2J~8,7,x,qz!#. ~A20!

Only J(4,3,x,qz) andJ(8,5,x,qz) have terms proportional to
1/e. We keep these terms and perform the integration ovx
to find

S2
c~q!5

3w1/2

64pe
q'

4 ~wqz
2!2e/4. ~A21!

We obtainS2(q) by addingS2
b(q) andS2

c(q) in Eqs.~A18!
and ~A21! to yield

dS2~q!

dq'
4 U

qz5m2,q'50

5~gme!22/3
g

32pe
~A22!

once we setw5(gme)2/3 and ignore higher-order terms ine.

APPENDIX B: EVALUATION OF THE SLIDING
COLUMNAR LOOP DIAGRAMS

The aim of this appendix is to calculateS(q), the one-
loop diagrammatic corrections to the vertex function for t
sliding columnar phase. The rotationally invariant theo
given in Eq. ~44! contains two relevant nonlinear term
]zuz(]xuz)

2 and (]xuz)
4. These terms are pictured schema

cally in Fig. 5. From this figure we see that only contractio
of ]zuz(]xuz)

2 renormalize the elastic constants to one-lo
order. The three possible contractions are shown in Fig
S(q) hasqz

2 , qx
2qy

2 , andqx
4 contributions and we will calcu-

late each separately below. To do this, we expressS(q) as

S~q!5P1~q!qz
21P2~q!qx

2qy
21P3~q!qx

4

[S1~q!1S2~q!1S3~q!. ~B1!

We have separated theqz
2 , qx

2qy
2 , and qx

4 dependences so
that, for instance,

dS

dqx
4U

qz5m2,q'50

5
dS3

dqx
4U

qz5m2,q'50

. ~B2!

As in Appendix A, we use dimensional regularization to c
culate the integrals.

1. Calculation of S1„q…

The qz
2 contribution to S(q) results from squaring the

diagram pictured in Fig. 5~b! and contracting both pairs ofx
derivatives. This leavesqz on each external leg as shown
Fig. 6~a!. S1(q) is theqz

2 part of the integral



in

l

la

o

x-
we

ate
n

s

to

that
ap-

ne

l

5962 PRE 58C. S. O’HERN AND T. C. LUBENSKY
S1~q!52
qz

2

2 E d32ek

~2p!32e

3@~qx1kx!
2kx

2G~q1k!G~2k!#, ~B3!

where

G~q!5
1

qz
21qx

2qy
21w21qx

4
. ~B4!

The coefficient of theqz
2 in the above integral isP1(q) and

thusS1(q)5qz
2P1(qx,y50,qz) plus higher-order terms inqx

andqy that vanish when we apply the boundary condition
Eq. ~54!. ThusS1(q) is obtained by settingqx5qy50 in Eq.
~B3!. We find

S1~q!52
w21/2

2

qz
2

~2p!32eE dkxdkzd
12eky

3F kx
4

kz
21w21kx

2k'
2

3
1

~qz1kz!
21w21kx

2k'
2 G ,

~B5!

where we have changed variables toky5w21/2ky8 and
dropped the prime. The first step in evaluating this integra
to combine the two denominators in Eq.~B6! using the iden-
tity in Eq. ~A6! with k'

4 replaced bykx
2k'

2 . We then perform
the integration overkz and find thatS1(q) can be written in
terms of the integralI (4,0,3,x,qz), where

I ~s,t,v,x,qz!5E
0

`

dkxdky

kx
sky

t2e

@x~12x!qz
21w21kx

2k'
2 #v/2

5
wv/2

8G~v/2!
GS 1

2
~ t112e! DGS 1

4
~s2t1e! D

3GS 1

4
~2v2t2s221e! D

3@x~12x!wqz
2#~s1t22v122e!/4. ~B6!

We give the most general form for the integrals overkx and
ky since we will need these integrals later when we calcu
S2(q) andS3(q). We find

S1~q!5
2w21/2

8p2
qz

2E
0

1

dx I~4,0,3,x,qz! ~B7!

and

S1~q!52
w

8p2e
qz

2~wqz
2!2e/4 ~B8!

sinceI (4,0,3,x,qz)}1/e. We then setw5gme to find S1(q)
as a function ofg,

dS1~q!

dqz
2 U

qz5m2,qx,y50

52
g

8p2e
. ~B9!
is

te

2. Calculation of S2„q…

Both theqx
2qy

2 and qx
4 contributions toS(q) come from

the diagrams withx derivatives on the external legs. The tw
contributing diagrams are shown in Figs. 6~b! and 6~c!. Their
sumS is given by

S52qx
2E d32ek

~2p!3
@~kz1qz!

2kx
2

1~qz1kz!~qx1kx!kzkx#G~k1q!G~2k!. ~B10!

We find theqx
2qy

2 terms by expandingG(k1q) to second
order inqy . We see that only the quadratic term in the e
pansion contributes. Higher-order terms will vanish when
apply the second boundary condition in Eq.~54!. We then
follow a procedure similar to the one employed to calcul
the q'

4 contribution to the 3D smectic vertex function i
Appendix A. We find thatS2(q) can be written in terms of
the integralsI (s,t,v,x,qz) as

S2~q!52
w21/2

8p2
qx

2qy
2E

0

1

dx@22~12x!I ~4,0,3,x,qz!

16w21~12x!2I ~6,2,5,x,qz!

23xqz
2~2x21!~12x!I ~4,0,5,x,qz!

115w21xqz
2~2x21!~12x!2I ~6,2,7,x,qz!#.

~B11!

We look for the leading-order terms ine in Eq. ~B11!;
I (4,0,3,x,qz) and I (6,2,5,x,qz) have leading-order term
proportional to 1/e, while I (4,0,5,x,qz) and I (6,2,7,x,qz) do
not and are dropped. After integrating Eq.~B11! over x we
obtain

S2~q!5
w

24p2e
qx

2qy
2~wqz

2!2e/4 ~B12!

and

dS2

d~qx
2qy

2!
U

qz5m2,qx,y50

5
g

24p2e
. ~B13!

3. Calculation of S3„q…

S3(q) is obtained by calculating the terms proportional
qx

4 in Eq. ~B10!. We obtain these terms by expandingG(k
1q) to second order inqx and noting that both first- and
second-order terms in the expansion contribute. Note
higher-order terms in the expansion will vanish once we
ply the third boundary condition in Eq.~54!. We calculate
the qx

4 contributions from Figs. 6~b! and 6~c! separately and
defineS3(q)[S3

b(q)1S3
c(q). We first calculate the contri-

bution from Fig. 6~b!. Using the same procedure as the o
employed to calculate theqx

2qy
2 contribution toS(q), we find

that S3
b(q) can be written in terms of the integra

I (s,t,v,x,qz),
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S3
b~q!52

w23/2

8p2
qx

4E
0

1

dx$2~12x!

3@6I ~4,0,3,x,qz!1I ~2,2,3,x,qz!

118x2qz
2I ~4,0,5,x,qz!13x2qz

2I ~2,2,5,x,qz!#

13w21~12x!2@4I ~8,0,5,x,qz!

120x2qz
2I ~8,0,7,x,qz!

14I ~6,2,5,x,qz!120x2qz
2I ~6,2,7,x,qz!

1I ~4,4,5,x,qz!15x2qz
2I ~4,4,7,x,qz!#%. ~B14!

We note that three of the integrals in Eq.~B14!,
I (4,0,5,x,qz), I (8,0,7,x,qz), andI (6,2,7,x,qz), have leading-
order terms that scale ase0 and are dropped. Two integra
I (2,2,3,x,qz) and I (4,4,5,x,qz) have 1/e2 as well as 1/e
terms, while the remaining five integralsI (4,0,3,x,qz),
I (2,2,5,x,qz), I (8,0,5,x,qz), I (6,2,5,x,qz), and I (4,4,7,x,qz)
have leading-order contributions that scale as 1/e. We collect
terms and perform thex integration to find
ff
na
F

e
-

S3
b~q!52

1

8p2e
qx

4~wqz
2!2e/4F1

e
1 ln@2#2

1

12G .
~B15!

Note that the dominant contribution toS3
b is of order e22

rather thane21. The undesirablee22 term and the ln@2#/e
term will be cancelled by terms inS3

c . The term proportional
to ln@2#/e originates from the integralsI (2,2,3,x,qz) and
I (4,4,5,x,qz). This can be seen by expandingI (4,4,5,x,qz) in
powers ofe; we find

I ~4,4,5,x,qz!5
2w25/2

e2 S 12
e

2

G8~5/2!

G~5/2!
1

e

2

G8~1!

G~1! D
3@x~12x!wqz

2#2e/4 ~B16!

to O(1/e), whereG8(x) is the derivative of theG function
evaluated atx. The logarithm arises from evaluating the d
rivative of the G function at a half integer. For example
G8(5/2)/G(5/2)52g18/322ln@2# where g is the Euler-
Mascheroni constant.

We can also writeS3
c(q) in terms of the integrals

I (s,t,w,x,qz). We obtain
S3
c~q!52

w23/2

8p2
qx

4E
0

1

dx$~12x!@210I ~4,0,3,x,qz!130x~12x!qz
2I ~4,0,5,x,qz!23I ~2,2,3,x,qz!19x~12x!qz

2I ~2,2,5,x,qz!#

13w21~12x!2@4I ~8,0,5,x,qz!220x~12x!qz
2I ~8,0,7,x,qz!14I ~6,2,5,x,qz!

220x~12x!qz
2I ~6,2,7,x,qz!1I ~4,4,5,x,qz!25x~12x!qz

2I ~4,4,7,x,qz!#%, ~B17!
f
um
ths
at

,

which becomes

S3
c~q!52

1

8p2e
qx

4~wqz
2!2e/4F2

1

e
2 ln@2#2

7

12G
~B18!

when only terms proportional to 1/e2 and 1/e are retained.
We see that when we add Eq.~B15! to Eq. ~B18!, the terms
proportional to 1/e2 and ln@2#/e cancel and we are left with

S3~q!5
1

12p2e
qx

4~wqz
2!2e/4 ~B19!

and

dS3~q!

dqx
4 U

qz5m2,qx,y50

5~gme!21
g

12p2e
. ~B20!

APPENDIX C: FINITE WAVE-NUMBER CUTOFF

In this appendix we show that employing a finite cuto
leads to ambiguities when we evaluate the sliding colum
one-loop diagrams. These diagrams are shown in Fig. 6;
6~a! contributes toS1(q) and both Figs. 6~b! and 6~c! con-
tribute toS2(q) andS3(q). The ambiguous result is that w
obtain different answers forS(q) depending on whether ex
r
ig.

ternal momentumq is sent through the top or bottom part o
the internal loop. The ambiguity develops when moment
qx appears in the internal loop and the top and bottom pa
through the internal loop are different. The diagram th
causes this ambiguity is theqx

4 part of Fig. 6~b!. We can see
this by calculating theqx

4 corrections to the vertex function
S3

b(top) and S3
b(bot), which result from sendingk1q

through the top~bottom! sections of the internal loop:

S3
b~ top!52qx

2E
L

d3k

~2p!3

3@kz
2~kx1qx!

2G~2k!G~k1q!# ~C1!

and

S3
b~bot!52qx

2E
L

d3k

~2p!3

3@kx
2~kz1qz!

2G~2k!G~k1q!#, ~C2!

whereL is a finite-wave-number cutoff andG(q) was de-
fined previously in Eq.~B4!. With LÞ`,

S3
b~ top!ÞS3

b~bot!. ~C3!
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If we employ dimensional regularization instead and se
L→`, these top and bottom amplitudes are identical.

APPENDIX D: DERIVATION OF THE NONLINEAR
STRAINS IN THE PRESENCE OF FLEXIBLE

MEMBRANES

In this appendix we derive expressions for the nonlin
strainsuyy(x) anduzz(x) introduced in Eqs.~69a! and~69b!
for the case of flexible membranes. A complete descript
of lamellar DNA-lipid complexes requires separate coor
nates for each membrane and each DNA molecule. Displ
ments of membranes and DNA molecules parallel to
membrane normals~along they direction when the mem
branes are flat! are locked together. We can therefore mod
the complexes as a stack of membranes each with a
dimensional mass-density wave representing the DNA lat
just above it. We employ mixed Lagrangian-Eulerian va
ables in which the coordinatey5na specifying the layer or
membrane number is a Lagrangian variable and the coo
nates (x,z)[r are Eulerian variables specifying positions
a fixed projection plane. The positions of mass points
membranen are then given by

Rn~r !5xx̂1zẑ1@na1uy~na,r !# ŷ. ~D1!

The density in membranen can be expanded asrn(r )5rn
0

1cn(r )1cn* (r ), where rn
0 is a constant, cn(r )

5ucnueifn(r ), and

fn~r !5k0@z2uz~na,r !# ~D2!

with k052p/d.
To construct the strain variableuyy(x) with x5(y,r ), we

introduce the distancel n(r ,r 8) between pointsr on mem-
branen and r 8 on membranen11 via

l n
2~r ,r 8!5uRn11~r 8!2Rn~r !u2. ~D3!

The shortest distance between a pointr on membranen and
any point on membranen11 is then

l n
2~r !5min

r8

l n
2~r ,r 8!. ~D4!

The strain variableuyy is defined as

uyy~x!5 lim
a→0

1

2a2 @ l y/a
2 ~r !2a2#. ~D5!

This quantity is by construction invariant with respect
global rotations of the entire system. To evaluateuyy(x), we
expandRn11(r 8)2Rn(r ) to lowest order indr5r 82r and
a:
ne

ce
d

r

n
-
e-
e

l
e-
e

-

i-

n

Rn11~r 8!5Rn~r !1a@11]yuy~x!# ŷ1dr mem , ~D6!

where m5x,z, em5]mRn(x) is a covariant tangent-plan
vector of thenth surface, anduy(x)5uy(na,r ). Then

l n
2~r ,r 8!5a2~11]yuy!212a~11]yuy!dr m]muy

1gmndr mdr n, ~D7!

wheregmn5em•en is the metric tensor of thenth surface and
we usedŷ•em5]muy . We then minimizel n

2(r ,r 8) over dr m

and obtain

dr m52a~11]yuy!gmn]nuy ~D8!

and

l y/a
2 ~r !5a2~11]yuy!2~12gmn]muy]nuy!. ~D9!

Finally, usinggmn5(gmn)21 where

gmn5dmn1]muy]nuy , ~D10!

we obtain

uyy~x!5
1

2F ~11]yuy!2

11~¹uy!2
21G

']yuy2
1

2
@~]xuy!21~]zuy!22~]yuy!2#,

~D11!

with ¹5(]x,0,]z). It is straightforward to verify that
uyy(x)50 for a uniform rotation of the entire system. Fo
example, a rotation of the system about thez axis byu pro-
duces strains]yuy51/cosu21 and]xuy5tanu, which cause
uyy to vanish.

The strainuzz(x) can also be defined in a rotational
invariant way via

uzz~x!5
1

2k0
2 @k0

22gmn]mf~x!]nf~x!#, ~D12!

where f(x)5fy/a(r ) is defined in Eq.~D2!. To quadratic
order in]muz and]muy , the nonlinear strainuzz is

uzz~x!']zuz2
1

2
@~]xuz!

21~]zuz!
22~]zuy!2#,

~D13!

whereuz(x)5uz(y,r ).
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@3# L. Golubovićand Z.-G. Wang, Phys. Rev. E49, 2567~1994!.
@4# C. S. O’Hern and T. C. Lubensky, Phys. Rev. Lett.80, 4345

~1998!.
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