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Nonlinear elasticity of the sliding columnar phase
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The sliding columnar phase is a liquid-crystalline phase of matter composed of two-dimensional smectic
lattices stacked one on top of the other. This phase is characterized by strong orientational but weak positional
correlations between lattices in neighboring layers and a vanishing shear modulus for sliding lattices relative to
each other. A simplified elasticity theory of the phase only allows intralayer fluctuations of the columns and
has three important elastic constants: the compression, rotation, and bending Bio#yli and K. The
rotationally invariant theory contains anharmonic terms that lead to long-wavelength renormalizations of the
elastic constants similar to the Grinstein-Pelcovits renormalization of the elastic constants in smectic liquid
crystals[Phys. Rev. Lett47, 856 (1981); Phys. Rev. A26, 915(1982]. We calculate these renormalizations
at the critical dimensiord=3 and find thatK,(q)~K4q)~B~3(q)~[In (1/q)]*, whereq is a wave
number. The behavior d8, K,, andK in a model that includes fluctuations perpendicular to the layers is
identical to that of the simple model with rigid layers. We use dimensional regularization rather than a
hard-cutoff renormalization scheme because ambiguities arise in the one-loop integrals with a finite cutoff.
[S1063-651%98)11011-5
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[. INTRODUCTION the other hand, is what the columnar phase becomes when
coupling between galleries becomes so weak that DNA lat-
DNA, which is a semiflexible polymer, and cationic lipids tices can slide freely across each other. It has no shear modu-
in solution form complexes in which the negative charge oflus resisting relative displacements of DNA lattices, but it
the DNA is nearly compensated for by the positive charge ofloes have a rotation modulus resisting their relative rotation.
the lipids. These complexes are under intensive study as poBislocations may melt the sliding columnar phase to an an-
sible nonviral carriers of DNA to cell nuclei for gene therapy isotropic nematic lamellar phase at length scales longer than
[1]. Radler et al. have shown that under appropriate condi-an in-plane dislocation unbinding lengf8]. It is possible,
tions the complexes self-assemble into multilamellar struchowever, to choose interlayer interactions so that the sliding
tures[2]. The lipids form stacked bilayer sheets with DNA columnar phase is the stable equilibrium phase at all length
molecules intercalated in the galleries between the bilayerscaleg 7].
as shown in Fig. 1. Each gallery is thick enough to accom- This paper will investigate the nonlinear elasticity of the
modate only one DNA molecule and its hydration layer.sliding columnar(SC) phase. Its principal purpose is to show
Within each gallery, DNA molecules adopt a linear ratherthat the nonlinear strains lead to a Grinstein-Pelcovits renor-
than a coiled configuration and form a regularly spaced parmalization of the elastic constar{t8] and not, as one could
allel array that in the absence of couplings to DNA in otherimagine, to the destruction of the sliding columnar phase
galleries is a two-dimensional smectic liquid cryg@). The itself. The lipid bilayers, which we take to be aligned on
experimentally determined x-ray structure factor of theseaverage parallel to thez plane as shown in Fig. 1, fluctuate
complexes is well modeled by a stack of weakly coupledike bilayers in any lamellar phase. To understand correla-
two-dimensional2D) smectic lattice$2]. tions and fluctuations of the DNA smectic lattices, it is con-
Two recent theoretical papefd,5] have pointed out that Vvenient to consider first a model in which the lipid bilayers
weakly coupled 2D smectic lattices form a different phase ofre rigid planes with no fluctuations in tigedirection. In this
matter, thesliding columnarphase. This phase is character-
ized by strong orientational correlations but weak positional
correlations between smectic lattices. All lattices are aligned
on average along a common directi@he x axis in Fig. 1,
but their relative positions decorrelate exponentially with
distance between smectic lattices. With sufficiently strong
coupling between galleries, long-range positional correla-
tions between smectic layers develop and the system be-
comes an anisotropic columnar phase with a two-
dimensional DNA lattice in the plane perpendicular to the FIG. 1. Picture of the idealized sliding columnar phase. The
direction of DNA alignment. The sliding columnar phase, ONDNA columns are sandwiched between planar lipid bilayer sheets.
The bilayer planes are stacked in hdirection with spacing. The
DNA columns are oriented in thedirection and within each layer
* Author to whom correspondence should be addressed. Electrontbe columns are separated thyThe positions of columns in neigh-
address: ohern@Iubensky.physics.upenn.edu boring layers are uncorrelated.
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TABLE I. Comparison of the logarithmic scaling exponents for unable to resolve. We found that the values of the one-loop
the elastic moduli of the 3D smectic and sliding columnar phasesdiagrams depended on whether the external momentum was
At long wavelengths the elastic moduli for both phases scale agdded to the top or the bottom part of the internal loop.

In°{1/q], with « given below.

Phase B K Ky
3D smectic —4/5 2/5
Sliding columnar —-3/4 1/2 1/4

Similar difficulties are not encountered in the Grinstein-
Pelcovits calculation. To eliminate these ambiguities, we
switched to the dimensional regularization procedure that ex-
plicitly preserves rotational invariance because the cutoffs
are infinite[13].

The remainder of the paper will be organized as follows.
We first rederive the results of Grinstein and Pelcovits in

case, displacements of the DNA lattices, which are alignede€c. Il using dimensional regularization. Then, in Sec. Ill we

on average along thedirection, are restricted to tredirec-
tion.

The rotationally invariant Landau-Ginzburg-Wilson
Hamiltonian in units ofkgT for this system is

1
H=5 f dX[BUZ+ Ky (dxdyup) >+ K(d5up) ), (1)

whereB, K, , andK are the compression, rotation, and bend-

ing moduli divided bykgT and

1
U,,= dU,— E[(axuz)2+(‘9zuz)2] (2

is the nonlinear Eulerian strain appropriate for the sliding

columnar phase. Note that is invariant under

Uz (X) = Uz(X) +f(y). )

calculate the renormalization of the sliding columnar elastic
constants of the simplified theory using the same scheme. In
Sec. IV we relax the constraint of rigid membranes and show
that the membrane fluctuations do not modify the scaling
behavior of the elastic moduli of the rigid theory. We give a
brief conclusion in Sec. V. In Appendixes A and B, we
evaluate the one-loop diagrams for the 3D smectic and sim-
plified sliding columnar theories. In Appendix C we show
that ambiguities arise when a finite cutoff is implemented to
calculate the loop diagrams of the sliding columnar theory.
Finally, in Appendix D we derive the nonlinear strains re-
quired for the rotationally invariant theory of the sliding co-
lumnar phase in the presence of fluctuating membranes.

II. RG ANALYSIS OF THE 3D SMECTIC LIQUID
CRYSTAL

The rotationally invariant elasticity theory for a smectic
liquid crystal contains nonlinear terms that renormalize the

It is this fact that ensures that nonlinearities do not deStm)élastic constants of the harmonic theory for all dimensions

the sliding columnar phase.
The rotationally invariant strairu,, introduces anhar-

monic terms into the Hamiltonian that lead to a Grinstein-

Pelcovits renormalization oB, K,, andK. The renormal-

ized moduli scale logarithmically withg at long
wavelengths:
w4
Ky(a)~KY4q)~B~*¥q)~ In(g” , 4)

whereyu is a large momentum cutoff. A complete model for

the sliding columnar phase allows both lipid bilayers and

smectic lattices to fluctuate. This model
Table | lists the exponents describing singularities in th

nar phases.

The evaluation of the above renormalization presented
some unexpected difficulties. The continuum Hamiltonian in

Eq. (1) is formally invariant under arbitrary global rotations.

However, the introduction of a hard cutoff breaks this rota-

also exhibits;
Grinstein-Pelcovits renormalization of the elastic constants

below 3. Grinstein and Pelcovits calculated the corrections to
the elastic constants of a 3D smectic using a RG analysis
with a finite-wave-number cutoff8]. They found that the
corrections to both the compression and bending moduli are
logarithmic in the wave numbeg with the former scaling to
zero and the latter scaling to infinity at long wavelengths.
Application of a hard-cutoff RG procedure to the sliding
columnar phase leads to ambiguities with no obvious resolu-
tion. (See Appendix G.We therefore employ a dimensional
regularization procedure that sends the cutoff to infinity and
thereby preserves rotational invariance. In this section we
rederive the Grinstein-Pelcovits results for a 3D smectic us-
ing dimensional regularization. This establishes the language
needed to calculate the renormalization in the sliding colum-

€har phase.
elastic constants for both the 3D smectic and sliding colum- P

A. Rotationally invariant theory

A smectic liquid crystal ind dimensions is characterized
by a mass-density wave with peridd=2w/q, along one
dimension and by fluidlike order in the othdr-1 dimen-

tional invariance just as the introduction of a similar cutoff sions. The phase of the mass-density wave at the point

breaks gauge invariance in gauge Hamiltonif®ls Never-
theless, hard-cutoff renormalization groURG) procedures

=(X,,2) is gg[z—u(x)]. The elastic Landau-Ginzburg-

Wilson Hamiltonian for a smectic is identical in form to the

can with care be applied successfully to Hamiltonians withLandau—Peierls—deGennes Hamiltonian for a 1D solid. In

gauge[10] or rotation symmetriefll]. Indeed, the original

Grinstein-Pelcovits calculation of the logarithmic renormal-
ization of the smectié elastic constants used a hard cutoff
[8]. When we applied the popular momentum-shell hard-

cutoff RG procedur¢12] to the nonlinearities in the sliding

units of kgT, it is

1
H=3 f X[ Barbiz,+ Konf V2 )71, 5

columnar phase, we encountered ambiguities that we wenghere V, is the gradient operator in thd—1 subspace
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spanned by, , andBg,, andK,, are, respectively, the com-
pression and bending moduli divided kyT. The nonlinear
Eulerian strainu,,= d,u—(1/2)(Vu)? is invariant with re-

spect to uniform, rigid rotations of the smectic layers. Below

we will drop the @,u)? term inu,, since its inclusion leads

to nonlinear terms that are irrelevant in the RG sense with

respect to the two quadratic terms in Ef). Therefore, we
will take

1 2
Uz/~du— E(VLU) . (6)

Strictly speaking, we should include a term linear up,
whose coefficient is chosen to mafe,,) =0. The inclusion

of and proper treatment of this term do not modify our RG
equations and we will ignore it here and in our treatment of

the sliding columnar phase.

B. Engineering dimensions

To implement our RG procedure it is convenient to re-

scale parameters so thBt,, is replaced by unity and the
nonlinear form ofu,, is preserved. To this end, we scale
andx as

Xy :;‘(L . (7)

u=L,u, z=L,z

Note thatx, does not rescale. Under these rescalings we

obtain

1 ~
LuL(VTU)? ).

_1 ~
Uz =Lyl *| zu— E

8

We requireu,,= Al,,, wherel,,= d;u—(1/2)(V7u)? is the
rescaled nonlinear strain with the same form as(Bq.This
yields L,=L,* and A=LZ. The coefficient ofuZ, in the
rescaled Hamiltonian is set to one with the choice

L =B, €)
The rescaled theory then becomes
1 ~ 1 ~
H=5 | d% u§Z+W(V§u)2 : (10)
with
B4
"R 11

For the remainder of Sec. Il we will use the Hamiltonian in
Eq. (10) but drop the tilde on the scaled variables.

We determine the dimensions of the scaled variables us-

ing the engineering dimensions Bf,,andK,,. The dimen-
siond, determines howA scales with length.: [A]=L%.
From the respective dimensiod@Sm —d and szm=2—d

of Bgm andK g, we obtain[L,]=[L, *]=L%3. Using these

we find the following for the dimensions of the scaled vari-

ables and the parameter
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N Bl Y| =y 1+d3
[u] LJ L, (2] Lj L1+d8,
d/3 (12)
L-
[XJ_]:L! [W]: ind :L—2€/3,

wheree=3—d. Using these definitions one can easily verify
that both terms in Eq(10) are dimensionlesgw] scales as
w2 where[ w]=L "1 and it is therefore a relevant variable
below d=3. The dimensions of the coefficients of the
(9,1)3, (3,u)*(V,u)?, and @,u)* terms are @/3, 2d/3, and
4d/3, respectively. These nonlinear terms are irrelevant and
will be ignored in what follows.

The engineering dimensions in E42) imply that there is
n invariance of{ under the transformatiop— ub and

u(x, ,z)=b%u’(x] ,z"), (13)
wherex| =b~1x, andz’=b~1*93z je,,
H[u,w,u]=H[u' Wb’ ub]. (14)

This in turn implies a scaling form for the position correla-
tion function G(x, ,z)=(u(x, ,z)u(0,0)) and its Fourier
transformG(q). We find

G(x, ,z,w)=b*1"IRG(x]| ,z’,wb??) (15)
and from this we obtain the vertex functiéi{(q)=G~(q),

T(q,,q,,w)=b"21*3 (b, b1+ 93, wh2e).

(16)
Whend=3 this reduces to the scaling form
4 g
I'(q,,0,,w)=q;I'| 1.—,w|, 17
1
which the harmonic vertex functidi=g2+w~*q} satisfies.

C. RG procedure

To calculate renormalized quantities, we seek a multipli-
cative procedure that yields a renormalized Hamiltonian with
the same form as the original Hamiltonian, i.e., a Hamil-
tonian that is a function of a renormalized nonlinear strain
with the same form as Ed6). To preserve the form of the
strains, it is necessary to rescale fields and lengths simulta-
neously. The rescaling that produced EX) shows that the
form of u,, is preserved if the rescaling coefficientswénd
z are inverses of each other. We therefore introduce a renor-
malization constan and a renormalized displacemant
such that

u(x)=2Yu' (x")=2%u'(x, ,2¥%2). (18
This implies thatu,(x) = 2%, (x"). We also introduce a
unitless renormalized coupling constanaind renormaliza-
tion constantz, via

W3/2: gMeZgZ 1/2, (19)
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where u is an arbitrary wave-number scale. The renormal-The CS equation is determined by the conditiedI/du
ized Hamiltonian then becomes =0. Since the renormalized vertex function can have an ex-
plicit as well as an implicitw dependence through the func-

H = }f A% [ Z(u)2+ (gueZ, )72/3(V2 u'2] tions Z andg, the CS equation foF, has three terms
2 ZZ 9 L’ .

20 /) d
(20 { P ER +ﬂ<g)@}rr=o, (26
We now follow standard procedures to evaluatgy) and ‘
Z4(9) [13]. The renormalized Hamiltonian in E(RO) deter-  where
mines the vertex function g
_4dg
L(@)=a;+(gu) %t +(2-1)q; BlO)=ug, (273
+(gu) P2y -+ 3 () (20 d(n 2)
= , 27h
to one-loop order, wherE(q) is the one-loop diagrammatic 79)=A(0) dg e

contribution toI'(g). We next impose the following condi-
tions on the vertex function to enforce the correct scalin

Eﬁndqz&lﬁqzz a.d/9q, with q,= 2~ 3, . This equation can
behavior:

e integrated to yield an equation fby as a function of the

length scaleu,
ar =1 (229 1!
e - P f :
9 qz:/”zqu:O Fr(qi quvgwu‘) eXF{S O7ld|
dr 1
i =(gu®) %2 (22 XTIl q.ex §fo ndl"1az,9(1), 10|
A la=u2a, =0
(28)
In Appendix A we show that the diagrammatic contributions | _
are whereu/pug=¢', pd/du=d/dl, andg(l) must satisfy
dg(l)
d(q) ___9 (233 =B (29
do? 16me’
Z lg,=u2q,=0
At =0 we have set’,(I=0)=T",(q, ,d,,90,40)-
d3(q) 9 Now we must solve fo and » in terms ofg in order to
" =(gu€) . (23p  obtain the renormalized vertex function. To fi{g), we
dai |, _,2q o S2me note that
z ML
/2
Using the conditions on the vertex function we obtain the dw? _ i(gﬂeeelz Z1)=0 (30)
relations for the renormalization constants in terms of the dl dl 0 9 '
one-loop diagrammatic corrections. The following relations ) ) ]
=gZ,2"2 We then plug in the relations fo and Z; and
g determineB and 7 to be
Z=1+ 16me’ (24a c
=_—_qg’-
2 B(9)= 579"~ <0, (31a
Zg: 1+ m (24b) 1
79)=-15-9- (31b

1. Callan-Symanzik equation

The renormalized vertex functidn, (q) satisfies a Callan- In three dimensiong=0. In this case, integration afg/dl
Symanzik(C9S equation under a change of length scale yields
We obtain the renormalized elastic moduli from the solution
to this equation. The original theory in E(LO) did not de- g(h)= 90 (32
pend on the length scaje. We can therefore write the bare 1+5gl/647’
vertex functionI” in terms of the renormalized vertex func-

tion I, and find the differential equation obeyed by. Where go=g(0)=w*2 The remaining task is simple; we
Since the variablesi and z scale asu’(x)=2Y3u(x’') and  Must evaluate the arguments of the exponentials in(E).
7' = 23, the vertex function must scale as to obtain thel dependence df,. Sinceg~1/, the integral

of # will scale as Il and the exponentials of the integral of
r'(q,,q,,W)=2""r(q,,2 %q,,9,n). (25 7 will give a power-law dependence dnWe find that
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1

3

5o _ 4/15

(33

} —4/15

#s),

The scaling relations in Eq$16) and (28) imply thatT",
satisfies

n(l’)dl’}=

2. Renormalized elastic constants

I (q,,0;,,9,4)=b"*[g/go]**®

XT,(bq, ,b?9/go]**,,9, 1ob).
(39

We now choose the reference length scbke,uglz(qg
+w1q*)"Y4=[h(qg)]" L. This implies that
73

e

since u/ uo=¢'. We find the scaling form of the renormal-
ized vertex function
1g!1>

(36)

I=In

(39

0 9/go] ¥
[h(a)]?

=g~ g/go]**a? +[9/90]"%0?

a.
h(q)’

Fr=[h(q)]“[g/go]4’l5Fr(

by squaring the term in the second slot of the renormalized

vertex function and adding it tg~?® times the fourth power
of the term in the first slot. We then plug in E@2) for g
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dimensional regularization scheme employed in the preced-
ing section. The steps we follow for the dimensional regu-
larization of the SC phase closely resemble those followed
for the dimensional regularization of the 3D smectic phase
since the two Hamiltonians have similar forms. In this sec-
tion we assume that each 2D lattice of columns is flat and
only allowed to fluctuate in the direction. We relax this
assumption in Sec. IV and find that the renormalized elastic
constants are identical to those of the flat theory to lowest
order in the coupling between strains in theand z direc-
tions.

A. Rotationally invariant theory

The rotationally invariant elasticity theory describing the
sliding columnar phase was derived previoush4rb]. We
found that a phase with weak positional correlations but
strong orientational correlations between neighboring 2D
smectic lattices was possible for sufficiently low tempera-
tures. The strong orientational correlations require a rotation
modulus in the Landau-Ginzburg-Wilson Hamiltonian that
assesses an energy cost for relative rotations of the lattices in
addition to the compression and bending energy costs for a
single lattice of columns. The Hamiltonian for the idealized
sliding columnar phase in three dimensions and in units of
kgT is

1
H=5 J dEX[BUZ+ K(J3U,)2+ Ky (dydxu)?],  (39)

whereB, K, , andK are the compression, rotation, and bend-

and transform back to variables with dimension to find theing moduli divided bykgT. Symmetry permits additional

expression for the renormalized vertex function

5g ; —4/5
_ Y 2
1—‘r(q)_Bsm 1+ 64’77|n F(q) qz
— 2/5
590 M 4
+Ksm 1+%In H(_q) q,, (37)
where go=BgiKey?, p=w/By, and h(a)=(q;

N2g) Y4 with \2=Kgn/Bgm. 42 is a wave numberA
~1/a associated with the short distance scal&Ve identify
the renormalized compression and bending mo&yli(q)
and K¢,(q) as the coefficients of thqg and qj terms, re-

terms in the Hamiltonian proportional ll@zy(azayuz)2 and

K, d,05U,)2. The K,y term measures the energy cost asso-
ciated with variation in the DNA lattice spacing from layer
to layer and th&,, term measures the energy cost associated
with the variation in the orientation with strand number of
DNA strands within a layer. These terms are, however, sub-
dominant to those kept in E¢39) and the coupling&,, and

K, are irrelevant. We will ignore them in what follows. The
nonlinear straini,, is identical to the nonlinear strain for one
layer of columnsu,,= d,u,— (1/2)[ (d4u,)%+ (d,u,)?]. Be-

low we will drop the @,u,)? term from the nonlinear strain
since it leads to terms in the nonlinear theory that are also
irrelevant with respect to the three harmonic terms in Eq.
(39). Therefore, we use the approximate expression

spectively. The renormalized elastic constants scale as pow-

ers of logarithms at long wavelengths
- 2/5
)7

-1/2
sm

Ksr(@)~Bgn (g)~| In (39

h(q)

where the long-wavelength regime is defined by wave num

bersq that satisfyh(q)<A%exd —64w/5g,]. We see that
Ksr(Q) scales to infinity andBg,(q) scales to zero af
—0.

Ill. SLIDING COLUMNAR PHASE WITH RIGID LAYERS

1

2 (aXuZ)z'

U, 7~ dU,— (40)

We note thatl,, andH do not possess a shear strain term
gayuz)2 because neighboring layers of columns can slide
relative to one another without energy cost. The absence of
the shear energy cost is a unique feature of the sliding co-
lumnar elasticity theory. Because the Hamiltonian lacks
terms withy derivatives alone, it is invariant with respect to
shifts in u, that are only a function ofy. Hence H[u,]

="H[ u,] with

In this section we calculate the logarithmic corrections to

the elastic constants for the sliding columnar phase using the

u,=u,+f(y). (41
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This invariance restates that there is no energy cost for slid&thend= 3 this reduces to
ing neighboring layers of columns relative to one another by

an arbitrary amount.

B. Engineering dimensions

We simplify the sliding columnar theory in E439) by
rescaling the lengths so thBtandK, are replaced by unity

and the nonlinear form ofi,, is preserved. We accomplish

this by scalingu,, y, andz but notx. To implement a di-
mensional regularization scheme it is necessary tx leg-

come a(d—2)-dimensional displacement in the space per-

pendicular toy andz. Rescaled variables are defined via

u=L,u,, x=%, y=Lyy, z=Lz (42

We first setL ,= LZ‘1 to preserve the form afi,, under Eq.

(42). We then set the coefficients of, and (F;dxu,)? to
unity by choosing

K3 1/4
Ly=(—y) . L,=(K,B)¥4 (43)

B

The rescaled Hamiltonian becomes
1 dorT2 ~ N2 —1/ 227 N2
HZE d X[uzz+(ﬁ;(a§/uz) +w (&;uz) ]a (44)

with

Bl/2

w= (45)
1/2
K Ky

andd=3—e. In the rest of this section we use E¢4) and
drop the tildes.

We determine the dimension of the scaled variables fro

the dimensions of the elastic constants in B2f). The di-
mensiong B]=L "9 and[K,]=[K]=L2"1 dictate
[u]=LB"9% [x]=L,

[y]: L(d*l)/Z’ (46)

[Z]: L(d+l)/2, [W]: Ld*3.
Note that[w] scales asu€ with [x]=L"! and is relevant
belowd=3.

The engineering dimensions in EG6) imply that the
Hamiltonian is invariant under the transformations- ub
and

uy(x)=b%.u’(x"), (47
with x’=b~1x, y'=b~@"D2y andz’=b~(@*1V/%7 je. the
Hamiltonian obeys

H[u, ,w,u]="H[u, , wbe,ub]. (48

This implies that there is a scaling form for the position

correlation function G(x) =(u,(x)u,(0)) and the vertex

functionI'=G 1. We find thatl"(q) obeys the scaling rela-

tion

F(@w)=b” (oo b gy 0 g, wh).
49

T(q,w)=a.T'(10y/dy,q./q%), (50)
which is satisfied by the SC harmonic vertex functibn
=q;+a5q;+w tay.

C. RG procedure

We now follow closely the RG procedure in Sec. Il C. We
rescale the lengths and fields, ensure that the SC Hamiltonian
has the same form as the unscaled SC Hamiltonian, impose
boundary conditions on the vertex function, and determine
the renormalization constants in terms of the one-loop dia-
grammatic corrections. The first step in the process is to
rescale lengths such that the renormalized SC Hamiltonian
has the same form as E@l4). To preserve the form of the
nonlinear strain, the and u rescalings must be inverses of
one another and theg rescaling is arbitrary. We therefore
introduce two renormalization constarsand Z, such that

u(x) =2 (x')=2%u)(x, 2,y,2"%2). (51
This implies that u,(x)=22%,(x") and d,dyu,(x)
=2z ,,9,u)(x"). We also define a unitless coupling
constantg and renormalization constai; by setting

w=guZ3z,z *. (52
The renormalized Hamiltonian then becomes
’ 1 dy s —1,,,71\2 1/3 2
H :E d X [ZZy (uZZ) +Z Zy(ﬁxrﬁy/uz)
+(gucZg) (a5 up)?]. (53)

We again employ standard RG procedures to calcufate

nby, and Z;. The renormalization constants are fixed once

we impose the following three conditions on the vertex func-
tion:
dr

- :1,
dg?

9,=p2,0,,=0

dr .
d(azay) ’

a,=u?0y =0

(54)

dr 3 o1
dqi =(gu) .

9,=u2dy =0

(Note that we have dropped the primes on the rescaled
Hamiltonian) The vertex function to one-loop order

I'=q2+q202+(gu®) g+ (22,1 -1)q?
+(2¥2,-1)qZal+ (gu) U2, - Dog+3(q)
(55)

is obtained from Eq.53) by adding and subtracting?
+0Z0;+(gu®) "'ax and including the one-loop diagram-
matic contributions to the vertex functid(q). In Appendix

B we calculate the diagrammatic contributions
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ds g 1. Callan-Symanzik equation
de?|  , T 872’ (563 The Callan-Symanzik equation is obtained by requiring
Az 150,y =0 that the original theory in Eq(44) be independent of the
as g length scalew. To ensure this, we setdI'/du=0. This can
2D =542 (56b  be converted into a differential equation in the renormalized
(axay) 4=wlag,=0 € vertex functionl', using scaling relation
d—% :(gﬂf)_l—gz— (56@ F(q,w):Z*1/3ZyFr(qX,Z;]-qy,Zfll3qz,g”u‘). (58)
dqg 127%€e
1A= u?,0, =0

From the scaling relation we determine that the CS equation
to lowest order ire. From these we determine the renormal- has the four terms

ization constants to be

g i_Lg)(l i)
Z=1+ 1672e’ (579 Mo"/.l, 3 249,
J J
et :1__2_9 (57b +ny(g)(1—qy—)+ﬂ(g)—rr=0, (59
y 167°€’ 9y 99

wheren(g) andB(g) were defined previously in Sec. 11 C 1
Zg=14 52 (579 and 5,(g) = B(g)d(In Z,)/dg. The solution to Eq(59) is
| n |
g -ex | |2 |arr, qx,ex;{ [ oy

1
Qy,€ex 3 fo ndl
with T'(1=0)=T'(,do, x0) and u/uo=¢'.
The coupling constanty must be independent of the length schl&his condition yields a differential equation for the
dimensionless constagtwhose solution is

qZ,Q,Mo), (60)

_ Yo
9= T g li6n? 6y
This equation in turn determines thelependence of; and 7, since they are both proportional ¢go We find
_ 9
Q) =—m1(9)= 15> (62

and thus these scale ad &t long wavelengths.

2. Renormalized elastic constants

Using Eq.(61) for g(I) and the relations for(g) and 5,(g) in Eq. (62), we obtain the scaling form of the renormalized
vertex function

' (9,9,1)=b~*[9/go] " (bay,bay[9/go] ~ ¥ b%q,[9/g0] ™89, mob). (63

To set the length scale, we choose 9 M —3/4
s e ) rr<q)=B(1+pln =—| o
b=po "= (a; +agay+w g "M=[h(q)] " (64) ™ [h(a)
— 1\ 4
It follows that 90 M 2.2
+Ky(1+ 67Tzln F(q) axdy
M
l=In| — (65) — 7\ 12
h(q)} do I 4
+K| 1+ Wln m Ay » (66)

sinceu and| are related vigu/uo=e€'. We then substitute
Eq. (61) for g and transform back to variables with dimen- o o
sion to obtain the following expression fbr.(q): where go=BY¥KK}?, u=pu/(K,B)¥5 and h(q)=(q>
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+)\§q§q§+ )\qu)m, with )\52 K,/B and\2=K/B. ;2 isan Y=nais a Lagrangian coordinate specifying the layer num-
upper momentum cutoff ~1/a associated with the short- ber. In Appendix D we derive the nonlinear straing and
distance scale. We can now identify the-dependent elas- Uyy for this mixed parametrization. To quadratic order in
tic constants and determine their scalinggetends to zero. gradients ofu, andu,, we find

At long wavelengths such thai(q) <A Y2exd —672/g,] the
In term dominates and we find

1 2 2 2
uyy:‘?yuy_i[(axuy) +(d,Uy)" = (dyuy)°], (693

1/4
_ Mm
Ky(a)~K"(q)~B l’*”(q){ln (—— ] . (67
’ h(a)
1
We see thaB(q) scales to zero an(q) andK,(q) scale to U,,= d,U,— 5[(&Xuz)z+(&Zuz)z—(azuy)z]. (69b)
infinity as q— 0. Also note in Table | that the exponents of
the logarithmic power laws oB(q) andK(q) are different
from those ofBg,{(q) and K¢(q), but the signs of the re-

; Note that the nonlinear straim,, does not contain the shear
spective exponents are the same.

strain term proportional toa@uz)z. Thus, layer fluctuations
do not modify the essential invariancé— u,+f(y) of the
sliding columnar phase to the order considered h&sg In
what follows, we will truncate the nonlinear strains to

IV. SLIDING COLUMNAR PHASE WITH FLUCTUATING
LIPID BILAYERS

In the preceding section we considered a model for lamel-

lar DNA-lipid complexes in which lipid bilayers were treated Uyy= dyUy , (708

as rigid planes and no displacements of DNA lattices inythe

direction were allowed. In physically realized complexes,

lipid bilayers can undergo shape fluctuations and DNA lat- 1 )

tices can undergy displacements. We can parameterize the Uz~ U, i(ﬁxuz) (70b)

shape of thenth bilayer by a height functioh,(x,z), which

in the continuum limit becomels(x) = hy,,(x,z). They dis-

placement of the DNA lattices in the continuum limit is since the other nonlinear terms are irrelevant with respect to

uy(x). At long wavelengths the displacemeritgx) and the sliding columnar harmonic terms in E8).

uy(x) are locked together. The lock-in occurs because there The goal of this section is to calculate the Grinstein-

is an energy cost for translating each lattice of columns andPelcovits renormalization of the eight elastic constants found

the lipid bilayers by different constant amounts in thdi-  in the theory of the sliding columnar phase with lipid bilayer

rection. (See Fig. 1. We can therefore describe long- fluctuations. Since the nonlinear strains do not introduce a

wavelength elastic distortions and fluctuations of the sliding&yuz)2 term, we do not expect the bilayer fluctuations to

columnar phase in terms of a Landau-Ginzburg-Wilson elasalter the renormalization of the SC elastic constants in the

tic Hamiltonian expressed in terms of displacemantsand  simplified theory of Sec. Il to lowest order BY%. We will

Uy : again use dimensional regularization to calculate the renor-

malization. The format will closely parallel the previous SC

calculation. We first determine which of the harmonic terms

in Eq. (68) are relevant and drop irrelevant terms. We then

, 21 By 2 Y22 rescale lengths and fields, ensure that the Hamiltonian retains

+ Ky (xdyUz) =+ BYuyy+ K duy) its unscaled form, impose boundary conditions on the vertex
2 2. \2 z function, and calculate the renormalization constants. The

Kl 9x02Uy) "+ Ko 95Uy) "+ 2BV Uz, renormalization constants then determine the scaling form of

(68  the vertex function.

1
Hyl Uy U] = Ef dgx[ Bzu§z+ K>Z<x(‘9>2(uz)2

where uy, and u,, are nonlinear strains. We defirf¢, to

have units ofkgT and therefore the constants appearing in A. Engineering dimensions
this equation are the compression and bending moduli di-
vided by kgT. The first three terms in Eq68) were dis-
cussed previously in Sec. Il as tle theory for the sliding
columnar phase without fluctuations of the lipid bilayers.
The next four terms are the compression and bending ener- =L T (71)
gies for an anisotropic 3D smectic with layers parallel to the ooy

xz plane. The bending energy is anisotropic due to the pres-

ence of the DNA columns. The final term is a coupling of theWe first impose the conditions of Sec. Il B, i.e., we set the
nonlinear strainsl,, andu,,. T ~, ) )

The form of the nonlinear strains depends on whethefoefficients ofu;, and (#d;u,)” to unity and ensure that
Eulerian or Lagrangian coordinates are ugbdl. We find it both terms in the nonlinear strain, scale thefame way. As
convenient to use a mixed parameterization in whigmdz  an added constraint, we set the coefficiemué; to unity.
are Eulerian coordinates specifying a position in space andhese conditions fix

We begin by rescaling the lengths and the fields{ijn In
addition to the rescalings in Sec. Il B, we also resoale
according to
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1/4 *

Uy B? (By)llz’ Z
U m==d ===

(KZ )3 1/4 y .l
Ly=|—22 , (72)
B y x
u
d

L=L,'=(K5B)™M
FIG. 2. Schematic diagram of the additional relevant nonlinear
Once we plug in these scaling lengths, the rescaled Hamikerm 4,u,(5,u,)? generated by the sliding columnar theory with
tonian becomes lipid bilayer fluctuations. The symbobs andy written adjacent to
the dividing lines represent andy derivatives of the respective
fields. Theu, field is denoted by a dashed line, whilgis denoted

1 ~ _1, .2
Hb:if dd;([u§Z+((5c(a§,uz)2+w 1(&XUZ)2 by a solid line.

+(ayu,)%+ 2v(a§,ﬁy)ﬁzz+vl(&;2t~1y)2 malized Hamiltonian with the same form as H@6). We
~ ~ scaley, z, andu, as we did previously in Eq51) andu, by
+ Uz(a;(a}uy) + Us(&}uy) 1, (73 Z12 g
with uy(x)=ZM2u)(x") = Z"u)(x, 2y, 2Y%2). (77
B (B2 B BY? The rescaled Hamiltonia®;, looks similar to Eq.(53) with
w= KZ (K2 )1/2' v= (ByBZ)1/2' two additional terms due to fluctuations of the bilayers. We
ey drop the primes on the variables and find
KLY KUK 1
Ul:W, UZZW, (74 Hb:zj ddX[ZZy lufz+ leSZy(&X&yuz)z
K)z,z( K)Z(y)l/z + (gﬂezg) 71((9>2<uz)2+ 2’77:L/?)Z'yy’z"(é’yuy)z
UV3=—— = —
¥ (BY)3BY +20 2, (d,Uy) U], (79)

(It is again necessary to letrepresent al—2 displacement where

with d=3—¢€.) The dimensions of the scaled variables and _ _

thew andv coefficients are determined using E@2) and vZ,=pZ2z13 (79
the dimensions of the compression and bending mddiji ] )

—L 9 and[K]=L2"¢ (Note we have dropped the tildes on @d Zq was defined previously.

the scaled variables in the following discussjowe find Boundary conditions imposed on the vertex functions
I'j;(q) with i,j=y,z ensure that the Hamiltonian retains its

[u,]= LA-D2 [3]=L° [v,]=L%"Y, _origin:_:tl form in Eq.(76) fi\flter res_caling. The vertex function
(75) is defined byI';;(q)=G;;*(q) with Gij(x) =(ui(xX)u;(0)).
[v]=L% [vs]=L9"3, The conditions imposed dn,, are identical to those given in

Eq. (54); these are augmented by two conditionsIgp and
while the dimensions ofl,, y, z, andw were given previ- T
ously in Eg.(46). Note thatv does not scale with length.

Also note that the coefficients;, v,, andvg are irrelevant dry, —oy
whend=3. We drop the irrelevant terms and arrive at the d(a,q,) ) v
simplified Hamiltonian T A= Ay =0
(80)
L[ agr 2 20 w192, )2 &’ =1
Hbzi d X[uzz+((9x(9yuz) +w(du,) dq2 e
Y la,=u2,q,,=0
+ (dyuy) %+ 20 (dyUy ) Uy,]. 76
(dytly) (dyuy)UizZ] (79 Once we impose these conditions on the vertex functions,
we solve for theZ’s in terms of the one-loop diagrammatic
B. RG procedure contributionsX,;; , where, for instancey.,, is the one-loop

The present RG procedure will be similar to those em-correction to the vertex functioli,,. The diagrammatic cor-
ployed in Secs. Il C and Il C, except we now have tworections arise from the quadratic termug,. uiz generates
coupling constante andv instead of one. We will show that d,u,(d,u,)?, which was already present in the theory with
the inclusion ofv does not alter the renormalization of the u,=0. The coupling oli,, to u,, generates a new nonlinear
sliding columnar elastic constants to lowest ordewinAs  term ayuy(axuz)Z. This term is shown schematically in Fig.
before, we rescale the fields and lengths and seek a rend2: There are six more one-loop diagrams in addition to the
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R
y x " y z B Y y
_-/ Z X
(b) —Hx x ;\—'—x 1 (b) —|__%x : \\+x
y\, X 4 >/y
© ﬂvﬁ—ﬁ— © ‘
X X —\y X X X - X

FIG. 3. Three diagrams that can be formed by contracting FIG. 4. Three diagrams that can be formed by contracting
d,uy(xu,)? with itself. The only diagram that contributes to the d,U,(d,U,)* with a,u,(9,u,)% The only diagram that contributes to
renormalization oBY is pictured in(a). The diagrams irtb) and(c) the renormalization oBYZ is pictured in(a). The diagrams pictured

contribute to the renormalization of boKg, andKy, . in (b) and(c) contribute to the renormalization of boitf, andKy, .
three diagrams of the rigid sliding columnar theory; these are dz,, gv_ 1
shown in Figs. 3 and 4. The diagrams in Fig. 3 arise from d(ayq,) - 8772 _ 2’
contractions ofdyuy(dyxu,)? with itself and the dlagrams in YAzilg,=p,q, =0 me Nl
Fig. 4 arise from contractions ofdyuy(dcu,)? with (82
U (dx uz)2 ] ) ) dEyy gv2 1
The one-loop diagrammatic correctiods, are easy to > = > =3
i - dq 8m%e V1—v?

calculate since the form of the propaga@y, is unchanged Y la,=n2q,,=0

from its form in the rigid sliding columnar theory. The form

is not changed, but the compression modiBus renormal- We then use the conditions imposed on the vertex func-
ized by a factor of +-v2 The one-loop diagrammatic cor- tions in Egs.(54) and (80) and the one-loop diagrammatic
rections tol",, are shown to lowest order ie corrections in Eqs(81) and(82) to find the renormalization

constants(the Z's) in terms ofg andv. We find that the
relatlons forz, 2,, andZ, are unchanged to zeroth order in

dz,, __ 9 1 v. 2 and Z, also have terms that are mdependemvoﬁs
dq§ . 87%e 1_0_2' shown below to lowest order ia:
oy
Z~1+ —2—9 Z~1+ —2—9 (83)
ds g 127%€’ v 87w e’
zz 7
d(g2a?) samzeV1v (8D _

44 9,=u2dy ,=0 The variation ofg andv with the length scalg: is obtained
by enforcing that both bare coupling constants do not depend
on u, i.e., we setudw/du=pudv/du=0. These two re-

dz,, o1 = quirements determine the recursion relationsgandv ; we
dq’ , =(gu) 1272 1-v” find thatdg/dl is unchanged to lowest order inand
X 1g,=p?0a,,=0
dv  gu @4
These expressions reduce to those found for the rigid theory dl 1672
whenv =0.

The calculation of one-loop diagrammatic corrections toThe zeroth-order solution fay was found previously in Eq.
I'y, andl'y, is similarly straightforward2., is given by the  (61); we plug this solution into Eq84) and find
diagram in Fig. 4a). This amplitude is proportional to
since it is formed by contractingd,u,(dy u,)? with
F,U,(dyu,)2. 2yyis glven by the diagram in Fig.(8); it must
be proportional tov? since it is formed by contracting
ayuy(axuz)2 with itself. The one-loop corrections 16,, and
I'yy are given below to lowest order i1 wherev,=BY%/BYB? andg,= \/B IK Gy Kix -

J— UO

=, 85
[1+gol/67°]¥8 (89



5958 C. S. O'HERN AND T. C. LUBENSKY PRE 58

C. Renormalized elastic constants in the theory withoutu, fluctuations. We also find that the

We found in Secs. Il C 2 and Il C 2 that the renormalized coefficient ofI'y,(q") is unity to lowest ordev and hence
elastic constants are obtained by solving the Callanthe vertex functionl’y, does not rescale. As a resuly
Symanzik equation for the renormalized vertex function. We=BY(I =0) plus higher-order terms in.

find the CS equations foF{j using the following scaling We do, however, find a nontrivial renormalization ¥~
equations that relate the bare and renormalized vertex fundhe scaling relation in E¢(86¢) leads to a CS equation for
tions: F’yz with a similar form to the one found in E¢9). We find

I Aqwu)=2"12 T (q,90,u), (863

1_77<_9>_L9>( i)
*dq,

72
~ — d 2 3
Fyy(q1W1U):Zilzyilzllar;y(qragav1Iu’)1 (86b) ILL
. J J

Tydqwp) =221 (q" gu.u). (869 * ’7y<9>( 1—qy(9—qy) TR gt =0 &
Equatlon(86§) yields a CS equation |d§nt|cal to !E@g) to to zeroth order irv, where
lowest order inv and thus the renormalized elastic constants
B*(q), Kx«(a), andK},(q) are identical to those obtained in B d(In %) 9
Eqg. (66) using theu,=0 theory. The fact that the elastic 7n(g)=B(9) dg =122 (88

constants are identical to zeroth ordemitis a consequence

of the fact that the nonlinear term proportionaﬁcnioes not and 7 and 5, were defined previously. The solution to Eq.
introduce any harmonic terms that were not already preser{87) can be transcribed from E¢60) and is

| 1 (!
F;Z(qx,ex;{Jonydl’ qy,ex;{gfondl’

Since 5, 7y, and7 scale as 1/ the integrals in the arguments of the exponentials scale logarithmicallyl withus the
exponentials yield power laws ip and we find, for example,

o |

The renormalized vertex function in EB9) obeys a scaling form analogous to the one obeyed by the renormalized sliding
columnar vertex function in Eq63). We find

I'}(0,9,4)=b"3[0/go]>®T} (bay.bay[9/do] ~¥8 b%a,[9/go] 8,9, uob), (91)

dl’

_ e
F;Z(qigvv(g)wu):ex JO §_7ly quga/LO)- (89)

7 g(1)]>®
2 W e

Jo

dl’ |= (90

where theb 2 prefactor is present becaugscales ad and  phase in which the DNA columns were prevented from fluc-
z scales asb? We then chooseb=,u51=[q§+ q§q§ tuating perpendicular to the lipid layers. We found that the
+w i Y*=[h(q)]"* to match the conventions of Sec. elastic constants scaled as powers dfLig] at long wave-
Il C 2, substitute Eq(61) for g/gy, and return to variables lengths. In particular, we found that the compression modu-
with dimension. The renormalized vertex function becomeslus B scales to zero and the rotation and bending mouli
andK scale to infinity agy tends to zero. We then added in
perpendicular fluctuations of the columns perturbatively and
F(_q) Oydz, (92 found that the above results were unchanged to lowest order
in the coupling between strains parallel and perpendicular to
where u and h(q) were defined previously. The renormal- the lipid layers. We employed dimensional regularization in
ized elastic constarBY%(q) is the coefficient of,q, in the ~ Our RG analysis of the sliding columnar phase to ensure
above expression. Therefore, we find that bBthand BY? rotational invariance. RG schemes that break rotational in-
scale to zero logarithmically with at long wavelengths de- Vvariance, such as the momentum-shell technique, did not

fined byﬁ(q) < AYex —672g,]. yield correct results.

o

—3/4

Jo

F;Z(Q) =2BY4 1+ ﬁ'ﬂ
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U u* S(a)=1y(q) gz +(q) i =21 (q) +25(q). (A1)
(a) 1, x 1, x Note that we have separated tt)% and qf dependence of
1,x L,x 2(q) so that to lowest order i
* d> dz
. " d2 = Fl (A2)
Ulg=n20,=0 A%lg,-u2q,-0
%k
Lo X u and
()
d3 d3
oL — -2 (A3)
. U da a,=#2,q, =0 da; a,=#2,4, =0

FIG. 5. Schematic representation of the two relevant nonlinear
terms in both the 3D smectic and sliding columnar elasticity theo-The contributions 0ﬂ22/dq§ to dE/dqf and Ofdzlld(ﬁ
ries. The perpendicular derivatives Y correspond to the 3D smec- to d2./d qf at the special poirg,= 12 andqg, =0 are higher
tic theory and thex derivatives to the sliding columnar theory. The order ine than the contributions in Eq§A2) and (A3). We
term (aL,xu)A is pictured in(a) and the term .Qzu)(o'gyxu)2 is pic- begin by calculating®,(q).
tured in(b). The symbolsL, x, andz represent. , x, andz deriva-
tives of theu field. The diagram with fouu fields in (a) does not

contribute to the renormalization to one-loop order; only contrac- 1. Calculation of X4(q)

tions of (b) with itself contribute. The diagram in Fig. @) alone contributes t& ;(q) since
it is the only one withqf on the external legs. To evaluate
APPENDIX A: EVALUATION OF THE 3D SMECTIC the integrals in the perturbation theory, we use dimensional
ONE-LOOP DIAGRAMS regularization, i.e., we takd=3— ¢, set the cutoff to infin-

ity, and look for the 1¢ terms.2;(q) is obtained by calcu-

Our task in this appendix is to calculatqq) defined in lating theq§ contribution from the integral
Sec. Il C as the one-loop diagrammatic correction§ (q),

the vertex function for the 3D smectic. These corrections q§ o g3 ¢k

arise from the nonlinear terms in the Hamiltonian in Eq. El(q):_?f ———La+ky)i(a,+ky);

(10). The two nonlinear terms arel,u,(V, u)?2 and —=(2m)

(V, u)#8 (shown schematically in Fig.)5nd only contrac-

tions of the former contribute to the renormalization to one- Xk ik jG(k+q)G(—k)], (A4)
loop order. The three possible contractions are shown in Fig. o

6. The diagrammatic correctio®(q) can be expressed as Wherei,j=x,y and

G(q)= —, (A5)
qz+w g}

1
1,x 1,x -
‘o L z The coefficient of the? term in Eq.(A4) is I1,(q). We can

then approximate3,(q) by writing 3(q)=q2I1,(q,

L,x 1,x =0,9,) plus higher-order terms iq, that vanish when we
apply the boundary condition in Eq228. We obtain
(b) —'}—— IT,(q,) by settingg, =0 in the integral on the right-hand
Lox , F side of Eq.(A4).

To evaluate the integral, we first combine the denomina-
tors of G(k+q) andG(—k) employing the identity

1L, x z
R B (ke ) >+ w ik (k2w k]
. X

FIG. 6. Three one-loop diagrams that contribute to the renor- _ fldx . _
malization of the 3D smectic and sliding columnar elastic constants. 0 [(k,+ qu)2+x(l—x)q§+w_lkf]2
These diagrams are formed by contractb’r}g(alvxu)2 with itself.
The diagram in(a) contributes terms proportional tqf since a (AB)
factor of g, is on each external leg. The diagrams(b) and (c) )
contribute terms proportional tq* in the 3D smectic theory and We then change variables tg =k,+xq, and perform the
terms proportional ta2q2 and gy in the sliding columnar theory  integration overk; . We find thatX,(q) can be written in

X

since these diagrams hagé or g2 on the external legs. terms of the integral(4,3x,q,) with J(s,v,X,q,) defined by
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K
XA ew K

J(vaqz)_j dk, kT
v/2

w

1
e ( (2v—s—2+¢)

1
r Z(S+2—€))

X[x(l_x)wqg](572v+27e)/4, (A?)

whereI'(x) is the gamma function evaluated»at The ex-

pression for;(q) is simple when expressed in terms of the

integralJ(4,3X,q,); we find

2

S1(q)=— f dx J(4,3x.,). (A8)

From Eq. (A7) we know that the most dominant term in

J(4,3x,q,) scales as ¥ and thus

3/2
2 2\ —€eld
16me J2(Wa2)

()=~ (A9)

plus higher-order terms ia. We can also write,;(q) as

dX,(q) 9
i =~ I6e (A10)

a,=u2.q,=0

when we replacev by (gu)?2.

2. Calculation of ,(q)

3.,(q) is determined by calculating thg' contributions
from the diagrams in Figs.(B) and Gc). 3,(q) is theq’
part of the integral

3—e€

22(Q):_QMQL]] [(kZ+qZ)2kliij

(277)375
+(kz+ qz)(kj_+ql)jkj_ikz]
X G(k+q)G(—kK). (A11)

Theqj contributions come from expandir@g(k +q) to sec-
ond order inq, ; we see from Eq(A1l) that we need both

1
(k,—a)2+w k] [KE+wk}]"
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=r(n+1)fldx
0
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the first- and second-order terms in the expansion. The coef-
ficient of the qj term in the above expansion H,(q,
=0,9,) and thus3,(q)=q?1I,(q,) plus higher-order terms

in q, that vanish when we apply the boundary condition in
Eqg. (22b.

The first and second terms in the integrand of &dl1)
correspond to the diagrams in Figgbgand Gc), respec-
tively. We break up the integral so tha&,(q)=35(q)
+35(q) and we first calculat® 5(q).

1
EqLiquqiqum

Xf-oc f(Zw)z € 7

d’G(k+q)
dq, da,

35(q)=-

X| (ky+ 0%k, ik jG(—K)

=0

(A12)

where() is the solid angle in 2 e dimensions and the sec-
ond derivative ofG gives the coefficient of the quadratic
term in the expansion dB(k+q). We then remove the an-
gular dependence by integrating ou@rand using the two
identities

dQ S, .
f Wk“k“ k2 (A13)
and
dQ
jWKLikijkleim
S
:(2_6)3kj(5ijélm+ it Sim T 6im i),
(A14)
where &;; is the Kronecker delta andSy= Q/(2m)d

—277“’2/(277)"F(d/2) with d=2—€. We are interested in
the lowest-order terms ine and hence will useS,_,
~(2m)~! below. We then change variables ko=k,+q,
and combine the denominators @{ —k) andG(k+q) us-
ing an identity similar to Eq(A6):

fa(X)
[(k,—x0p)%+x(1—x)q2+w Kk}t

(A15)
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wheren=2,3 and

1-x, n=2

(1-x)%/2, n=3. (AL6)

fn(x):[

We change variables againk=k,+xq, and integrate over
k2 we find that35(q) can be written in terms of the inte-
gralsJ(s,v,X,q,) defined previously in EqA7):

w1 1
35(q)=— qu fo dx[—5(1—x)J(4,3x,0,)

—15¢%(1-x)q2J(4,5%,q,)
+9w™}(1-x)23(8,5x%,9,)

+45v~ 1x2(1-x)%q23(8,7x,9,) 1. (A17)

J(4,3%,q,) andJ(8,5x,q,) have terms proportional to 4/
but J(4,5x,q,) andJ(8,7x,q,) do not. We keep the terms
that are proportional to #/and drop the others. In the last
step we perform th& integration and find

1/2

64me (A18)

qf (wg?) "

Shq)=-—

plus higher-order terms ia.

We next obtair® $(q) by calculating they? contributions
from the diagram in Fig. @). 25(q) can be written in terms
of the integral

1-€
L

ES(Q)Z—QMQLJWd q

xfwdkzkm G(—k
7@% z(z qz) (_)

dG(k+q)
d%

X(kmfhjohl

qL:O

A, 4., d°G(k+q)|
+kL'kL'

) qudle‘q

Al

(A19)

The first and second derivatives @fgive the coefficients of
the linear and quadratic terms o, in the expansion of

G(k+q). We then follow a procedure similar to the one

employed to find5(q), i.e., we change variables tk)
=k,+q,, combine the denominators oG(k+q) and
G(—k), and integrate ovef). The remaining integrals in
Eq. (A19) are overk, andx. We then integrate ovee, and
write 35(q) in terms ofJ(s,v,X,q,); we find
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3(a)=-— W—_lqi fldX[— 9(1-x)J(4,3%,9,)
327 o
+27x(1—x)%q23(4,5x,9,)
+9w 1(1-x)2J(8,5x,q,)
— 45w~ x(1-x)292J(8,7x,q,)]. (A20)

Only J(4,3x,q,) andJ(8,5x,qd,) have terms proportional to
1/e. We keep these terms and perform the integration gver
to find

1/2

25(0)= 5o al (wag) . (A21)

We obtain3 ,(q) by adding25(q) and35(q) in Egs.(A18)
and (A21) to yield

d=,(q)
dqf

- g
=(gus) 55— (A22)

a,=u?,q,=0
once we sew=(gu)?® and ignore higher-order terms i

APPENDIX B: EVALUATION OF THE SLIDING
COLUMNAR LOOP DIAGRAMS

The aim of this appendix is to calcula®(q), the one-
loop diagrammatic corrections to the vertex function for the
sliding columnar phase. The rotationally invariant theory
given in Eq. (44) contains two relevant nonlinear terms
d,U,(d4u,)? and (@,u,)*. These terms are pictured schemati-
cally in Fig. 5. From this figure we see that only contractions
of d,u,(d,u,)? renormalize the elastic constants to one-loop
order. The three possible contractions are shown in Fig. 6.
3(q) hasq?, gZq;, andgy contributions and we will calcu-
late each separately below. To do this, we expie&s) as

() =14(q) a5+ () aZaZ +T5(a)ay

=31(9)+2,(9)+25(9). (B1)

We have separated thg, q;q;, and gy dependences so

that, for instance,

dz

d3,
dqj

= (B2)
. dag

a,= 2.0, a,=n2q,=0
As in Appendix A, we use dimensional regularization to cal-
culate the integrals.

1. Calculation of ;(q)

The q§ contribution to3(q) results from squaring the
diagram pictured in Fig.®) and contracting both pairs af
derivatives. This leaveg, on each external leg as shown in
Fig. 6(a). 21(q) is theqi part of the integral



5962 C. S. O'HERN AND T. C. LUBENSKY PRE 58

qz d3~ <k 2. Calculation of 3,(q)

1(Q)—_

(2m)3 ¢ Both theqfq§ and qﬁ contributions toX(g) come from
the diagrams withx derivatives on the external legs. The two
X[ (gy+ kx)zkiG(qu K)G(—k)], (B3) contributing diagrams are shown in Figgband &c). Their
sums is given by
where

d® <k
=0 J ket G

+(qz+ kz)(Qx+kx)kzkx]G(k+q)G(_k)- (BlO)

1
G(g)= —- (B4)
s +aza5+w gy

The coefficient of theqz in the above integral i$I,(qg) and
thusX,(q) =q2I1;(a,,,=04,) plus higher-order terms ig, ~ We find thegZq; terms by expandings(k+q) to second
andgq, that vanish when we apply the boundary condition inorder ingy . We see that only the quadratic term in the ex-

Eq. (54) Thus3.,(q) is obtained by setting,=q,=0 in Eq. pansion contrlbutes Higher-order terms will vanish when we
(B3). We find apply the second boundary condition in E§4). We then

follow a procedure similar to the one employed to calculate

w2 g2 the gq? contribution to the 3D smectic vertex function in
2(@)=-— ﬁj dk,dkd' ™k, Appendix A. We find tha ,(q) can be written in terms of
(2m) the integrald (s,t,v,X,q,) as
ks 1
X ez © 2 1221' 12 !
Kz+w™TkekT  (dz+ k) "+ wTkGkT S,(q)=— o2 qiqifodx[—2(1—x)|(4,o,3x,qz)
T

(B5)

+6w 1(1—-x)1(6,2,5x,0,)
where we have changed variables kg=w™ %/ and i

dropped the prime. The first step in evaluating this integral is —3xg5(2x—1)(1—x)1(4,0,5x,0,)
to combine the two denominators in E&6) using the iden- 12 )
tity in Eq. (A6) with k? replaced byk2k? . We then perform +15w "X 05 (2x—1)(1—-%)1(6,2,7X,0,) ].
the integration ovek, and find that(q) can be written in (B11)
terms of the integral (4,0,3x,q,), where

We look for the leading-order terms ia in Eq. (B11);

(" kaky € 1(4,0,3x,0,) and 1(6,2,5x,q,) have leading-order terms
I(s,t,v,X,0,) = 0 dkxdky[x(l—x)q2+wflk2k2]”’2 proportional to 1¢, while 1(4,0,5x,q,) andl(6,2,7x,q,) do
z X not and are dropped. After integrating E&11) over x we
w2 r F( 1 obtain
_—8F(U/2) E(t‘f‘l—ﬁ) Z(S_t+€)
w
1 32(0)= 57 dxay(weg) ~ (B12)
r|z(2v—t-s=2+¢) S 24nte YT
X [X(l_X)qu](s+t—2u+2—e)/4_ (B6) and
We give the most general form for the integrals okgand dz, 9
ky since we will need these integrals later when we calculate d(qxq ) , T 24m%€” (B13)
3,(g) and24(q). We find Y7 la,=p?0, =0
—1/2 .
El(q)— = qZ dx 1(4,0,3x,9,) (B7) 3. Calculation of 35(q)

3.3(q) is obtained by calculating the terms proportional to
gs in Eq. (B10). We obtain these terms by expandiGgk
+q) to second order i, and noting that both first- and
second-order terms in the expansion contribute. Note that
2(wap) (B8)  higher-order terms in the expansion will vanish once we ap-
ply the third boundary condition in Eq54). We calculate

sincel (4,0,3x,q,) = 1/e. We then setv=gu* to find 2 (q) the g; contributions from Figs. ®) and Gc) separately and

and

2(q)=—

as a function ofy, define23(q)EE§(q)+2§(q). We first calculate the contri-
bution from Fig. &b). Using the same procedure as the one
d>1(q) g employed to calculate tmﬁqy contribution toZ(q), we find
dq§ T 8n2e (B9 that 23(q) can be written in terms of the integral

a,= 12,0y =0 I(s,t,v,X,0,),
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wo 312

b 1
33(q)=— q‘X‘J’de{—(l—x)

87T2
X[61(4,0,3x,9,) +1(2,2,3%,9,)
+18x%q21(4,0,5x,0,) +3x%q21(2,2,5X,0,) ]
+3w Y(1-x)7[41(8,0,5%,0,)
+20x%q21(8,0,7x,9,)

+41(6,2,5x,0,) + 20x°q21(6,2,7x,q,)

+1(4,4,5%,0,) +5x29%1(4,4,7x,9,)]}.  (B14)
We note that three of the integrals in EdqB14),
1(4,0,5x,q,), 1(8,0,7%,9,), andl(6,2,7x,q,), have leading-
order terms that scale a8 and are dropped. Two integrals
1(2,2,3%,0,) and 1(4,4,5x,q,) have 1£* as well as 1¢
terms, while the remaining five integralg(4,0,3x%,q,),
1(2,2,5x,q9,), 1(8,0,5%,0,), 1(6,2,5%,9;), andl(4,4,7x,0,)
have leading-order contributions that scale as We collect
terms and perform the integration to find

W—3/2

S5(q)=—
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1
35q)=— g2 Ox(wag) "

1 1
Z + In[2] - 1—2 .
(B15)

Note that the dominant contribution ®% is of order e 2

rather thane ®. The undesirablee2 term and the If2]/e
term will be cancelled by terms B§. The term proportional
to In[2)/e originates from the integral$(2,2,3x,q,) and
1(4,4,5x,q,). This can be seen by expandihg,4,5x,q,) in
powers ofe; we find

2w 52 el’(5/2 €eI'(1)
|(4,4,5x,qz)—7 1_5 I'(5/2) +§ ra)
X [X(1—x)wgZ] (B16)

to O(1/e), wherel'’ (x) is the derivative of thd" function
evaluated ak. The logarithm arises from evaluating the de-
rivative of theI' function at a half integer. For example,
I'"(5/2)[T'(5/2)= — y+8/3—2In[2] where y is the Euler-
Mascheroni constant.

We can also write2§(q) in terms of the integrals
I(s,t,w,X,q,). We obtain

1
o2 Ox fodx{(l—x)[—lol(4,0,3x,qz>+30x<1—x>qil<4,o,5x,qz>—3|(2,2,3x,qz)+9x<1—x>qil<2,2,5x,qz>]
ar

+3w(1—x)?[41(8,0,5x,9,) — 20x(1—x)q21 (8,0,7x,9,) + 41(6,2,5x,0,)

—20x(1-x)q21(6,2,7x,0,) +1(4,4,5%,q,) — 5x(1 - x) 21 (4,4,7x,9,) 1}, (B17)

which becomes

1 1 7
c — _ 4 2\—€ld| _ _
2§(a)=— g diwa) [ ~—n[2] 12}
(B18)
when only terms proportional to 47 and 1k are retained.

We see that when we add E@15) to Eq.(B18), the terms
proportional to 1¢2 and Ij2]/e cancel and we are left with

1 4 2\ — €l
23(0)= 122 I (WaZ) (B19)
and
d=5(q) o1
ad =91 152, (B20)
Ax 4,=u2dy =0

APPENDIX C: FINITE WAVE-NUMBER CUTOFF

In this appendix we show that employing a finite cutoff

leads to ambiguities when we evaluate the sliding columnar

one-loop diagrams. These diagrams are shown in Fig. 6; Fi
6(a) contributes ta>4(q) and both Figs. @) and &c) con-
tribute toX,(q) and23(q). The ambiguous result is that we
obtain different answers fdX (q) depending on whether ex-

ternal momentung is sent through the top or bottom part of
the internal loop. The ambiguity develops when momentum
gy appears in the internal loop and the top and bottom paths
through the internal loop are different. The diagram that
causes this ambiguity is thﬁ part of Fig. §b). We can see
this by calculating theqi corrections to the vertex function,
>5(top) and 35(bot), which result from sending+q
through the top(bottom) sections of the internal loop:

d3k
A(2m)3

3 5(top) = —q2

X[k2(kyt+a,)%G(—k)G(k+q)]  (CY
and
d3k
b _ A2
23(b0t)_ quA(ZW)S
X[K2(k,+0,)?G(—k)G(k+q)], (C2

here A is a finite-wave-number cutoff an@(q) was de-
ined previously in Eq(B4). With A # o,

>5(top) # 3 5(bot). (C3
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If we employ dimensional regularization instead and send R rY=R.(r)+al 1+ dou.() T+ s e D6
A—, these top and bottom amplitudes are identical. n+a(T) =Ralr)+al 1+ 9y, (0 1y ur (D6

where u=x,z, ,=d,R,(X) is a covariant tangent-plane

APPENDIX D: DERIVATION OF THE NONLINEAR vector of thenth surface, an([uy(x) = uy(na,r)_ Then
STRAINS IN THE PRESENCE OF FLEXIBLE
MEMBRANES 12(r,r")=a%(1+ d,u,)?+2a(1+dyuy) 8r*a u,
In this appendix we derive expressions for the nonlinear +Q,,, 0T or”, (D7)

strainsuy,(x) andu,/x) introduced in Eqs(698 and(69b)

for the case of flexible membranes. A complete descriptiorw\,herengeﬂ. e, is the metric tensor of theth surface and

of lamellar DNA-lipid complexes requires separate coordi-, . usedgl-e =a,u,. We then minimize 2(r,r') over sr*
nates for each membrane and each DNA molecule. Displacey, meoTREYE nme

ments of membranes and DNA molecules parallel to the nd obtain

membrane normalgalong they direction when the mem- b _ wv

branes are flatare locked together. We can therefore model or a(L+dyuy)g™ 9,y (08)
the complexes as a stack of membranes each with a ongpq

dimensional mass-density wave representing the DNA lattice

just above it. We employ mixed Lagrangian-Eulerian vari- 12 (r)=a%(1+d,u,)3(1—g**d,u,d,u,). (D9
ables in which the coordinate=na specifying the layer or via vy pEyE
membrane number is a Lagrangian variable and the coordiing]ly, usingg’=(g,,,) " * where

nates &,z)=r are Eulerian variables specifying positions in

a fixed projection plane. The positions of mass points on 90— 8,4t d,Uyd, Uy, (D10)
membranen are then given by

~ A - we obtain
Rn(r)=xx+zz+[na+uy(nar)ly. (D1
2
The density in membrane can be expanded as(r)=p9 Uyy(X) = 1 _(1+ayuy)2 _
+in(r)+ i (r), where pp is a constant, y(r) 2| 1+(Vu,)
= | lr/fnlel ¢n(r)’ and 1
¢n(r):k0[z— uz(na,r)] (DZ) Nayuy_ E[quy)z"‘(azuy)z_(&yuy)z],
with ko= 2/d. (D1D

To construct the strain variablg,,(x) with x=(y,r), we

introduce the distanck,(r,r') between points on mem- With V=(dx04;). It is straightforward to verify that

branen andr’ on membran@+ 1 via uy,(X)=0 for a uniform rotation of the entire system. For
example, a rotation of the system about #exis by 6 pro-
|ﬁ(r,f')=|Rn+1(f')— Rn(1)]|2. (D3) duces straing,u, = 1/co¥)—1 andd,u,=tand, which cause
Uyy to vanish.
The shortest distance between a poin membrane and The strainu,/x) can also be defined in a rotationally
any point on membrane+1 is then invariant way via
12(r)y=minl(r,r"). (D4)

1
X UyAX) = m[ké—gwm(xmmx)], (D12)

The strain variables,, is defined as
where ¢(x) = ¢y,a(r) is defined in Eq.(D2). To quadratic

1 order ind, u, andd, u,, the nonlinear straim,, is
uyy(x)zIlmoﬁ[lﬁ,a(r)—az]. (D5) niz ny 2z
a—
1
~ _ 2 2__ 2
This quantity is by construction invariant with respect to UzA(X)~ J;U, 2[(‘9XUZ) +(92U2)" = (d7uy)7],
global rotations of the entire system. To evaluajg(x), we (D13
expandR,,1(r')—R,(r) to lowest order indr=r’"—r and
a: whereu,(X) =u,(y,r).
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